版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆黑龍江省哈爾濱市哈三中數(shù)學(xué)高一上期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.()A B.C. D.2.已知函數(shù),若,則的值為A. B.C.-1 D.13.如圖,在直三棱柱ABC-A1B1C1中,AC=CC1,點D,O分別是AB,BC1的中點,則下列結(jié)論錯誤的是()A.與平面ABC所成的角為 B.平面C.與所成角為 D.4.已知命題p:,,則()A., B.,C., D.,5.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.6.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是A. B.C. D.7.若點、、在同一直線上,則()A. B.C. D.8.若,則的最小值為A.-1 B.3C.-3 D.19.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.10.命題“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”二、填空題:本大題共6小題,每小題5分,共30分。11.已知在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.12.已知直線過點.若直線在兩坐標(biāo)軸上的截距相等,求直線的方程______.13.已知,g(x)=x+t,設(shè),若當(dāng)x為正整數(shù)時,恒有h(5)≤h(x),則實數(shù)t的取值范圍是_____________.14.已知圓,則過點且與圓C相切的直線方程為_____15.函數(shù),其中,,的圖象如圖所示,求的解析式____16.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的定義域為,不等式的解集為設(shè)集合,且,求實數(shù)的取值范圍;定義且,求18.目前,"新冠肺炎"在我國得到了很好的遏制,但在世界其他一些國家還大肆流行.因防疫需要,某學(xué)校決定對教室采用藥熏消毒法進行消毒,藥熏開始前要求學(xué)生全部離開教室.已知在藥熏過程中,教室內(nèi)每立方米空氣中的藥物含量(毫克)與藥熏時間(小時)成正比;當(dāng)藥熏過程結(jié)束,藥物即釋放完畢,教室內(nèi)每立方米空氣中的藥物含量(毫克)達到最大值.此后,教室內(nèi)每立方米空氣中的藥物含量(毫克)與時間(小時)的函數(shù)關(guān)系式為(為常數(shù)).已知從藥熏開始,教室內(nèi)每立方米空氣中的藥物含量(毫克)關(guān)于時間(小時)的變化曲線如圖所示.(1)從藥熏開始,求每立方米空氣中的藥物含量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;(2)據(jù)測定,當(dāng)空氣中每立方米的藥物含量不高于0.125毫克時,學(xué)生方可進入教室,那么從藥熏開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室?19.設(shè)向量(Ⅰ)若與垂直,求的值;(Ⅱ)求的最小值.20.設(shè)函數(shù),.(1)若方程在區(qū)間上有解,求a的取值范圍.(2)設(shè),若對任意的,都有,求a的取值范圍.21.已知函數(shù),該函數(shù)圖象一條對稱軸與其相鄰的一個對稱中心的距離為(1)求函數(shù)的對稱軸和對稱中心;(2)求在上的單調(diào)遞增區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由根據(jù)誘導(dǎo)公式可得答案.【詳解】故選:A2、D【解析】,選D點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.3、A【解析】在A中,∠C1AC是AC1與平面ABC所成的角,從而AC1與平面ABC所成的角為45°;在B中,連結(jié)OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1與BB1所成的角,從而AC1與BB1所成的角為45°;在D中,連結(jié)OD,則OD∥AC1【詳解】由在直三棱柱ABC-A1B1C1中,AC=CC1,點D,O分別是AB,BC1的中點,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1與平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1與平面ABC所成的角為45°,故A錯誤;在B中,連結(jié)OD,∵點D,O分別是AB,BC1的中點,∴OD∥AC1,∵OD?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1,故B正確;在C中,∵CC1∥BB1,∴∠AC1C是AC1與BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1與BB1所成的角為45°,故C正確;在D中,連結(jié)OD,∵點D,O分別是AB,BC1的中點,∴OD∥AC1,∵OD?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1,故D正確故選A【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題4、A【解析】直接利用全稱命題的否定即可得到結(jié)論【詳解】因為命題p:,,所以:,.故選:A.5、B【解析】抽象函數(shù)的定義域求解,要注意兩點,一是定義域是x的取值范圍;二是同一對應(yīng)法則下,取值范圍一致.【詳解】的定義域為,,即,,解得:且,的定義域為.故選:.6、A【解析】當(dāng)時,在上是增函數(shù),且恒大于零,即當(dāng)時,在上是減函數(shù),且恒大于零,即,因此選A點睛:1.復(fù)合函數(shù)單調(diào)性的規(guī)則若兩個簡單函數(shù)的單調(diào)性相同,則它們的復(fù)合函數(shù)為增函數(shù);若兩個簡單函數(shù)的單調(diào)性相反,則它們的復(fù)合函數(shù)為減函數(shù).即“同增異減”
函數(shù)單調(diào)性的性質(zhì)(1)若f(x),g(x)均為區(qū)間A上的增(減)函數(shù),則f(x)+g(x)也是區(qū)間A上的增(減)函數(shù),更進一步,即增+增=增,增-減=增,減+減=減,減-增=減;(2)奇函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相同,偶函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相反7、A【解析】利用結(jié)合斜率公式可求得實數(shù)的值.【詳解】因為、、在同一直線上,則,即,解得.故選:A.8、A【解析】分析:代數(shù)式可以配湊成,因,故可以利用基本不等式直接求最小值.詳解:,當(dāng)且僅當(dāng)時等號成立,故選A.點睛:利用基本不等式求最值時,要注意“一正、二定、三相等”,有時題設(shè)給定的代數(shù)式中沒有和為定值或積為定值的形式,我們需要對代數(shù)式變形,使得變形后的代數(shù)式有和為定值或者積為定值.特別要注意檢驗等號成立的條件是否滿足.9、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當(dāng)有兩個解時,則,當(dāng)有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質(zhì)的應(yīng)用.本題為嵌套函數(shù)的應(yīng)用,一般的,我們應(yīng)用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結(jié)合圖象逐步分析,解得答案10、D【解析】根據(jù)特稱命題的否定是全稱命題,即可得出命題的否定形式【詳解】因為特稱命題的否定是全稱命題,所以命題“,使”的否定形式為:,使故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)復(fù)合函數(shù)單調(diào)性的判斷方法,結(jié)合對數(shù)函數(shù)的定義域,即可求得的取值范圍.【詳解】在區(qū)間上單調(diào)遞減由對數(shù)部分為單調(diào)遞減,且整個函數(shù)單調(diào)遞減可知在上單調(diào)遞增,且滿足所以,解不等式組可得即滿足條件的取值范圍為故答案為:【點睛】本題考查了復(fù)合函數(shù)單調(diào)性的應(yīng)用,二次函數(shù)的單調(diào)性,對數(shù)函數(shù)的性質(zhì),屬于中檔題.12、或【解析】根據(jù)已知條件,分直線過原點,直線不過原點兩種情況討論,即可求解【詳解】解:當(dāng)直線過原點時,斜率為,由點斜式求得直線的方程是,即,當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入方程可得,故直線的方程是,綜上所述,所求直線的方程為或故答案為:或.13、[-5,-3]【解析】作出的圖象,如圖,設(shè)與的交點橫坐標(biāo)為,則在時,總有,所以當(dāng)時,有,,由,得;當(dāng)當(dāng)時,有,,由,得,綜上,,故答案為:.14、【解析】先判斷點在圓上,再根據(jù)過圓上的點的切線方程的方法求出切線方程.【詳解】由,則點在圓上,,所以切線斜率為,因此切線方程,整理得.故答案為:【點睛】本題考查了過圓上的點的求圓的切線方程,屬于容易題.15、【解析】首先根據(jù)函數(shù)的最高點與最低點求出A,b,然后由圖像求出函數(shù)周期從而計算出,再由函數(shù)過點求出.【詳解】,,,解得,則,因為函數(shù)過點,所以,,解得因為,所以,.故答案為:【點睛】本題考查由圖像確定正弦型函數(shù)的解析式,第一步通過圖像的最值確定A,b的值,第二步通過周期確定的值,第三步通過最值點或者非平衡位置的點以及16、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:2三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】由二次不等式的解法得,由集合間的包含關(guān)系列不等式組求解即可;由對數(shù)函數(shù)的定義域可得,利用指數(shù)函數(shù)的單調(diào)性解不等式可得,由定義且,先求出,再求出即可【詳解】解不等式,得:,即,又集合,且,則有,解得:,故答案為.令,解得:,即,由定義且可知:即,即,故答案為.【點睛】本題考查了二次不等式的解法、對數(shù)函數(shù)的定義域、指數(shù)函數(shù)的單調(diào)性以及新定義問題,屬中檔題.新定義題型的特點是:通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設(shè)全新的問題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識和方法,實現(xiàn)信息的遷移,達到靈活解題的目的.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.18、(1);(2)0.8小時.【解析】(1)時,設(shè),由最高點求出,再依據(jù)最高點求出參數(shù),從而得函數(shù)解析式;(2)解不等式可得結(jié)論【詳解】解:(1)依題意,當(dāng)時,可設(shè),且,解得又由,解得,所以(2)令,即,得,解得,即至少需要經(jīng)過后,學(xué)生才能回到教室.19、(Ⅰ)2;(Ⅱ).【解析】(Ⅰ)先由條件得到的坐標(biāo),根據(jù)與垂直可得,整理得,從而得到.(Ⅱ)由得到,故當(dāng)時,取得最小值為試題解析:(Ⅰ)由條件可得,因為與垂直,所以,即,所以,所以.(Ⅱ)由得,所以當(dāng)時,取得最小值,所以的最小值為.20、(1);(2).【解析】(1),有解,即在上有解,設(shè),對稱軸為,只需,解不等式,即可得出結(jié)論;(2)根據(jù)題意只需,分類討論去絕對值求出,利用函數(shù)單調(diào)性求出或取值范圍,轉(zhuǎn)化為求關(guān)于的不等式,即可求解.【詳解】(1)在區(qū)間上有解,整理得在區(qū)間上有解,設(shè),對稱軸為,,解得,所以a的取值范圍.是;(2)當(dāng),;當(dāng),,,設(shè)是減函數(shù),且在恒成立,在上是減函數(shù),在處有意義,,對任意的,都有,即,解得,的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 威海海洋職業(yè)學(xué)院《教具設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 汽車金融分期付款合同范例
- 合伙養(yǎng)豬合伙合同范例
- 包干律師服務(wù)合同范例
- 秸稈材料采購合同范例
- 店鋪轉(zhuǎn)讓合同范例版
- 外墻抹灰勞務(wù)合同范例
- 2025高壓配電工程安裝施工合同
- 校園規(guī)劃設(shè)計合同范例
- 中介擔(dān)保合同范例
- 隧道工程鉆爆法開挖技術(shù)
- 過駁操作計劃SHIP-TO-SHIP
- 拆遷復(fù)耕施工方案
- 八年級語文寒假作業(yè)單
- 錨索施工安全技術(shù)交底
- 現(xiàn)代材料分析測試技術(shù)智慧樹知到課后章節(jié)答案2023年下煙臺南山學(xué)院
- 小數(shù)乘除法四則混合運算含簡算專項練習(xí)(6套)
- 《數(shù)學(xué)建模》期末考試試卷一與參考答案
- 銀行訴訟案件管理辦法
- 五年級信息技術(shù)上冊期末測試卷答案
- 社區(qū)、居家養(yǎng)老服務(wù)標(biāo)準(zhǔn)與規(guī)范-社區(qū)、居家養(yǎng)老服務(wù)
評論
0/150
提交評論