![河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view8/M00/2D/15/wKhkGWclxk6AfdOWAAG4dZi1SjQ680.jpg)
![河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view8/M00/2D/15/wKhkGWclxk6AfdOWAAG4dZi1SjQ6802.jpg)
![河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view8/M00/2D/15/wKhkGWclxk6AfdOWAAG4dZi1SjQ6803.jpg)
![河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view8/M00/2D/15/wKhkGWclxk6AfdOWAAG4dZi1SjQ6804.jpg)
![河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view8/M00/2D/15/wKhkGWclxk6AfdOWAAG4dZi1SjQ6805.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省兩校2025屆高三數(shù)學第一學期期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若,則()A.4 B.-4 C.8 D.-82.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.3.()A. B. C.1 D.4.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2825.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.6.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.107.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.8.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.49.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.410.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.11.函數(shù)的值域為()A. B. C. D.12.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最小值是_________,最大值是_________.14.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.15.直線過圓的圓心,則的最小值是_____.16.若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.18.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.19.(12分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.21.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.22.(10分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.2、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.3、A【解析】
利用復數(shù)的乘方和除法法則將復數(shù)化為一般形式,結合復數(shù)的模長公式可求得結果.【詳解】,,因此,.故選:A.【點睛】本題考查復數(shù)模長的計算,同時也考查了復數(shù)的乘方和除法法則的應用,考查計算能力,屬于基礎題.4、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題5、C【解析】
對此分段函數(shù)的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應的等差數(shù)列和等比數(shù)列,最后分組求和,要求學生對數(shù)列和函數(shù)的熟悉程度高,為中檔題6、C【解析】
根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質,屬難題.7、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.8、D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉化能力.9、C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.10、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).11、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.12、D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、06【解析】
作不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結合是解決問題的基本方法,屬于中檔題.14、12【解析】
由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。【點睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結構特征,合理、恰當?shù)乇硎局彼睦庵忮F的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。15、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標準方程、“乘1法”和基本不等式的性質,屬于基礎題.16、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】
(1)當a=2時,求出,求解,即可得出結論;(2)函數(shù)在上有兩個零點等價于a=2x在上有兩解,構造函數(shù),,利用導數(shù),可分析求得實數(shù)a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調(diào)遞減;當時,單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設,函數(shù)g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當時,有,即,當時,有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數(shù)a的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉化思想以及數(shù)形結合思想,考查邏輯推理、數(shù)學計算能力,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.19、(1).(2)的方程為.【解析】
(1)令,則,由此能求出點C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達定理,三角形面積公式,結合已知條件能求出直線的方程?!驹斀狻拷猓海?)因為,即直線的斜率分別為且,設點,則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關系,考查運算求解能力,考查化歸與轉化思想,是中檔題。20、(1)B(2)【解析】
(1)由已知結合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.21、(1)①當時,在上單調(diào)遞減,在上單調(diào)遞增;②當時,在上單調(diào)遞增;(2).【解析】
(1)求出函數(shù)的定義域和導函數(shù),,對討論,得導函數(shù)的正負,得原函數(shù)的單調(diào)性;(2)法一:由得,分別運用導函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級英語下冊 Unit 10 單元綜合測試卷(人教陜西版 2025年春)
- 新人教版道德與法治七年級上冊《生命的思考-第八課-探問生命-敬畏生命》-77
- 2025年事業(yè)單位聘用合同協(xié)議樣本(2篇)
- 2025年臨時工勞動合同協(xié)議參考模板(三篇)
- 2025年五年級數(shù)學第一單元認識負數(shù)教學心得范文(2篇)
- 2025年個人租地協(xié)議范文(2篇)
- 2025年產(chǎn)品使用合作合同(2篇)
- 2025年事業(yè)單位聘用勞動合同(4篇)
- 2025年代理商合作合同(2篇)
- 學校創(chuàng)意工坊改造協(xié)議
- 2025年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
- 商務部發(fā)布《中國再生資源回收行業(yè)發(fā)展報告(2024)》
- 山東省濟南市2024-2024學年高三上學期1月期末考試 地理 含答案
- 2025年福建新華發(fā)行(集團)限責任公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 實施彈性退休制度暫行辦法解讀課件
- 冷凍食品配送售后服務體系方案
- 中華護理學會團體標準-氣管切開非機械通氣患者氣道護理
- C型鋼檢驗報告
- 檢驗科臨檢組風險評估報告文書
- 幼小銜接拼音試卷-帶彩圖-幼小銜接拼音試卷圖片-幼小拼音試卷習題
- 曹晶《孫悟空大鬧蟠桃會》教學設計
評論
0/150
提交評論