版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆吐魯番市高昌區(qū)第二中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.3.已知復數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.4.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.5.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.6.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.57.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.848.已知全集,集合,則=()A. B.C. D.9.已知集合,,則A. B.C. D.10.數(shù)列滿足,且,,則()A. B.9 C. D.711.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限12.設(shè)是虛數(shù)單位,復數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為偶函數(shù),則_____.14.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.15.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)16.設(shè)是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.18.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.19.(12分)設(shè)點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.20.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.21.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.22.(10分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.3、C【解析】
把代入,利用復數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復數(shù)代數(shù)形式的除法運算,考查復數(shù)的基本概念,是基礎(chǔ)題.4、D【解析】
根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點睛】本題考查函數(shù)的導數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.5、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.6、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運用,屬于中檔題.7、D【解析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質(zhì),即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.8、D【解析】
先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.9、D【解析】
因為,,所以,,故選D.10、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.11、C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應(yīng)的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內(nèi)對應(yīng)的點的坐標為(-1,-1),位于復平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.12、D【解析】
利用復數(shù)的除法運算,化簡復數(shù),即可求解,得到答案.【詳解】由題意,復數(shù),故選D.【點睛】本題主要考查了復數(shù)的除法運算,其中解答中熟記復數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.14、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.15、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.16、2【解析】
設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學生的計算能力.18、(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標求得結(jié)果.試題解析:(1)證明:取的中點,連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點,可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點,連接,過作的平行線,可建立如圖所示的空間直角坐標系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個法向量,∵,則直線與平面所成角的正弦值為.點睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直于這個平面.平面與平面垂直的判定方法:①定義法.②利用判定定理:一個平面過另一個平面的一條垂線,則這兩個平面垂直.19、(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達定理得,設(shè),利用三點共線,求得,然后驗證即可.【詳解】解:(1)設(shè),則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.20、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應(yīng)用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.21、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設(shè)點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數(shù)方程,極坐標方程,弦長,意在考查學生的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房產(chǎn)認購專項協(xié)議范本
- 2024年成品油銷售協(xié)議模板
- 2023-2024學年珠海市全國大聯(lián)考(江蘇卷)高三第二次數(shù)學試題試卷
- 2024年高效代理合作招募協(xié)議模板
- 2024年幼教崗位聘用協(xié)議范本
- 彩鋼瓦安裝工程協(xié)議模板2024年
- 2024年海水產(chǎn)品長期供應(yīng)協(xié)議模板
- 2024年度潤滑油分銷協(xié)議范本
- 文書模板-《硬件設(shè)計合同》
- 2024房產(chǎn)居間服務(wù)協(xié)議模板
- 微積分方法建模12傳染病模型數(shù)學建模案例分析
- 衛(wèi)浴產(chǎn)品世界各國認證介紹
- 江蘇省職工代表大會操作辦法.doc
- 湘教版小學音樂五年級上冊教學計劃
- sch壁厚等級對照表
- 高新技術(shù)企業(yè)認定自我評價表
- 藥物分類目錄
- 中石油-細節(jié)管理手冊 03
- 柿子品種介紹PPT課件
- 全國重點文物保護單位保護項目安防消防防雷計劃書
- 護士對預防患者跌倒的問卷調(diào)查表
評論
0/150
提交評論