2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖南省寧鄉(xiāng)縣一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校去年有1100名同學(xué)參加高考,從中隨機抽取50名同學(xué)總成績進行分析,在這個調(diào)查中,下列敘述錯誤的是A.總體是:1100名同學(xué)的總成績 B.個體是:每一名同學(xué)C.樣本是:50名同學(xué)的總成績 D.樣本容量是:502.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.3.拋擲一枚質(zhì)地均勻的骰子兩次,記{兩次的點數(shù)均為奇數(shù)},{兩次的點數(shù)之和為8},則()A. B.C. D.4.設(shè)是等差數(shù)列的前項和,已知,,則等于()A. B.C. D.5.將一枚骰子連續(xù)拋兩次,得到正面朝上的點數(shù)分別為、,記事件A為“為偶數(shù)”,事件B為“”,則的值為()A. B.C. D.6.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.27.的展開式中的系數(shù)是()A. B.C. D.8.直線的傾斜角為()A.60° B.30°C.120° D.150°9.已知空間向量,,則()A. B.19C.17 D.10.設(shè)是空間一定點,為空間內(nèi)任一非零向量,滿足條件的點構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段11.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件12.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若直線與平行,則實數(shù)________.14.函數(shù)的圖象在點處的切線方程為____.15.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______16.已知函數(shù)在R上連續(xù)且可導(dǎo),為偶函數(shù)且,其導(dǎo)函數(shù)滿足,則不等式的解集為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標(biāo).18.(12分)已知,,分別是銳角內(nèi)角,,的對邊,,.(1)求的值;(2)若的面積為,求的值.19.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.21.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:22.(10分)一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果:轉(zhuǎn)速(轉(zhuǎn)/秒)1615129每小時生產(chǎn)有缺陷的零件數(shù)(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關(guān)關(guān)系:(1)求關(guān)于的回歸直線方程;(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(參考:回歸直線方程為,其中,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】采用逐一驗證法,根據(jù)總體,個體,樣本的概念,可得結(jié)果.【詳解】據(jù)題意:總體是1100名同學(xué)的總成績,故A正確個體是每名同學(xué)的總成績,故B錯樣本是50名同學(xué)的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎(chǔ)題.2、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當(dāng)直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.3、B【解析】利用條件概率公式進行求解.【詳解】,其中表示:兩次點數(shù)均為奇數(shù),且兩次點數(shù)之和為8,共有兩種情況,即,故,而,所以,故選:B4、C【解析】依題意有,解得,所以.考點:等差數(shù)列的基本概念.【易錯點晴】本題主要考查等差數(shù)列的基本概念.在解有關(guān)等差數(shù)列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準(zhǔn)它們的值.運用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設(shè)未知數(shù)、列出方程、解方程三個環(huán)節(jié),常通過“設(shè)而不求,整體代入”來簡化運算5、B【解析】利用條件概率的公式求解即可.【詳解】根據(jù)題意可知,若事件為“為偶數(shù)”發(fā)生,則、兩個數(shù)均為奇數(shù)或均為偶數(shù),其中基本事件數(shù)為,,,,,,,,,,,,,,,,,,一共個基本事件,∴,而A、同時發(fā)生,基本事件有當(dāng)一共有9個基本事件,∴,則在事件A發(fā)生的情況下,發(fā)生的概率為,故選:6、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.7、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B8、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.9、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳驗椋?,所以,故,故選:D.10、C【解析】根據(jù)法向量的定義可判斷出點所構(gòu)成的圖形.【詳解】是空間一定點,為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.11、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當(dāng)時,利用正弦函數(shù)的單調(diào)性知;當(dāng)時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.12、A【解析】根據(jù)平面向量垂直的性質(zhì),結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當(dāng)時,有,顯然由,但是由不一定能推出,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩直線平行可得出關(guān)于實數(shù)的等式與不等式,即可解得實數(shù)的值.【詳解】因為,則,解得.故答案為:.14、【解析】先求出導(dǎo)函數(shù),進而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程.【詳解】由題意,,,則切線方程為:.故答案為:.15、①..②..【解析】以點為坐標(biāo)原點,,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)空間向量的線性運算求得向量的坐標(biāo),由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標(biāo)原點,,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如下圖所示)由題意可知,,,因為,,所以,故設(shè)平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.16、【解析】由已知條件可得圖象關(guān)于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數(shù),所以的圖象關(guān)于軸對稱,所以的圖象關(guān)于對稱,因為,所以當(dāng)時,,當(dāng)時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時,直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點的坐標(biāo)為.點睛:(1)本題主要考查直線的位置關(guān)系和距離的計算,意在考查學(xué)生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.18、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.19、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題20、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個法向量,計算即可求解;(2)假設(shè)線段上存在點符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點,使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.21、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,設(shè),,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論