2023九年級數(shù)學(xué)上冊 第二十二章 二次函數(shù)22.1 二次函數(shù)的圖象和性質(zhì)22.1.3 二次函數(shù)y=a(x-h)2+k 的圖象和性質(zhì)第1課時 二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版_第1頁
2023九年級數(shù)學(xué)上冊 第二十二章 二次函數(shù)22.1 二次函數(shù)的圖象和性質(zhì)22.1.3 二次函數(shù)y=a(x-h)2+k 的圖象和性質(zhì)第1課時 二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版_第2頁
2023九年級數(shù)學(xué)上冊 第二十二章 二次函數(shù)22.1 二次函數(shù)的圖象和性質(zhì)22.1.3 二次函數(shù)y=a(x-h)2+k 的圖象和性質(zhì)第1課時 二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版_第3頁
2023九年級數(shù)學(xué)上冊 第二十二章 二次函數(shù)22.1 二次函數(shù)的圖象和性質(zhì)22.1.3 二次函數(shù)y=a(x-h)2+k 的圖象和性質(zhì)第1課時 二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版_第4頁
2023九年級數(shù)學(xué)上冊 第二十二章 二次函數(shù)22.1 二次函數(shù)的圖象和性質(zhì)22.1.3 二次函數(shù)y=a(x-h)2+k 的圖象和性質(zhì)第1課時 二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023九年級數(shù)學(xué)上冊第二十二章二次函數(shù)22.1二次函數(shù)的圖象和性質(zhì)22.1.3二次函數(shù)y=a(x-h)2+k的圖象和性質(zhì)第1課時二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版科目授課時間節(jié)次--年—月—日(星期——)第—節(jié)指導(dǎo)教師授課班級、授課課時授課題目(包括教材及章節(jié)名稱)2023九年級數(shù)學(xué)上冊第二十二章二次函數(shù)22.1二次函數(shù)的圖象和性質(zhì)22.1.3二次函數(shù)y=a(x-h)2+k的圖象和性質(zhì)第1課時二次函數(shù)y=ax2+k的圖象和性質(zhì)教案(新版)新人教版教學(xué)內(nèi)容分析本節(jié)課的主要教學(xué)內(nèi)容來自新人教版2023九年級數(shù)學(xué)上冊第二十二章二次函數(shù)22.1節(jié),具體是22.1.3節(jié)的“二次函數(shù)y=a(x-h)^2+k的圖象和性質(zhì)”中的第一課時,著重探討二次函數(shù)y=ax^2+k的圖象和性質(zhì)。教學(xué)內(nèi)容與學(xué)生已有知識的聯(lián)系在于,學(xué)生在八年級已學(xué)習(xí)過一次函數(shù)的圖象與性質(zhì),并掌握了基本的一元二次方程求解方法。在此基礎(chǔ)上,本節(jié)課將引導(dǎo)學(xué)生通過數(shù)形結(jié)合的方式,理解二次函數(shù)的基本形式y(tǒng)=ax^2+k的圖象特征,包括開口方向、頂點位置、對稱軸以及與y軸的交點等性質(zhì),并與之前所學(xué)知識形成體系,深化對函數(shù)圖象的理解和應(yīng)用。教學(xué)目標(biāo)分析本節(jié)課的教學(xué)目標(biāo)從核心素養(yǎng)角度出發(fā),旨在培養(yǎng)學(xué)生以下幾方面的能力:

1.數(shù)學(xué)抽象:通過探究二次函數(shù)y=ax^2+k的圖象和性質(zhì),使學(xué)生能夠從實際問題中抽象出數(shù)學(xué)模型,理解函數(shù)的概念,提高數(shù)學(xué)抽象思維能力。

2.邏輯推理:引導(dǎo)學(xué)生運(yùn)用已知的數(shù)學(xué)知識和方法,通過邏輯推理分析二次函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S。

3.數(shù)學(xué)建模:培養(yǎng)學(xué)生利用二次函數(shù)模型解決實際問題的能力,讓學(xué)生在實際情境中運(yùn)用所學(xué)知識,提高數(shù)學(xué)建模素養(yǎng)。

4.數(shù)學(xué)運(yùn)算:在求解二次函數(shù)的相關(guān)問題中,強(qiáng)化學(xué)生的運(yùn)算能力,特別是關(guān)于頂點坐標(biāo)、對稱軸等性質(zhì)的運(yùn)算。

5.數(shù)據(jù)分析:通過分析二次函數(shù)圖象的變化規(guī)律,使學(xué)生能夠從數(shù)據(jù)中提取有效信息,提高數(shù)據(jù)分析能力。

6.空間想象:通過觀察二次函數(shù)的圖象,培養(yǎng)學(xué)生對幾何圖形的直觀認(rèn)識和空間想象力。

7.問題解決:培養(yǎng)學(xué)生運(yùn)用二次函數(shù)知識解決實際問題的能力,提高解決問題的策略和方法。

本節(jié)課的教學(xué)目標(biāo)與新課程理念緊密相連,強(qiáng)調(diào)在掌握二次函數(shù)知識的基礎(chǔ)上,提高學(xué)生的數(shù)學(xué)核心素養(yǎng),使學(xué)生在知識、能力、情感等方面得到全面發(fā)展。重點難點及解決辦法重點:

1.二次函數(shù)y=ax^2+k的圖象特征,包括開口方向、頂點位置、對稱軸及與y軸的交點。

2.二次函數(shù)圖象與性質(zhì)之間的關(guān)系,如a的符號與開口方向的關(guān)系,k的值與y軸交點的關(guān)系。

難點:

1.理解二次函數(shù)圖象的對稱性及其在實際問題中的應(yīng)用。

2.利用頂點式解析二次函數(shù)圖象,并解決相關(guān)的問題。

解決辦法與突破策略:

1.利用多媒體教學(xué)工具,動態(tài)展示二次函數(shù)圖象的變化過程,幫助學(xué)生直觀理解圖象特征。

2.通過小組合作學(xué)習(xí),讓學(xué)生相互討論,發(fā)現(xiàn)并總結(jié)二次函數(shù)圖象的性質(zhì)規(guī)律。

3.設(shè)計具有層次性的練習(xí)題,由淺入深地引導(dǎo)學(xué)生掌握二次函數(shù)圖象與性質(zhì)的應(yīng)用。

4.引導(dǎo)學(xué)生通過畫圖、列表等方式,將抽象的數(shù)學(xué)問題具體化,降低理解難度。

5.對于難點問題,采用問題驅(qū)動的教學(xué)方法,鼓勵學(xué)生提問,引導(dǎo)學(xué)生通過問題解決來深化理解。

6.結(jié)合實際情境,設(shè)計相關(guān)問題,讓學(xué)生在實際問題中發(fā)現(xiàn)二次函數(shù)圖象的對稱性和頂點式的應(yīng)用價值。

7.對學(xué)習(xí)困難的學(xué)生提供個別輔導(dǎo),針對性地解決他們在理解和應(yīng)用上的問題。教學(xué)方法與手段教學(xué)方法:

1.講授法:在教學(xué)二次函數(shù)y=ax^2+k的圖象和性質(zhì)時,采用講授法對基本概念、性質(zhì)和公式進(jìn)行系統(tǒng)講解,確保學(xué)生能夠準(zhǔn)確理解二次函數(shù)的基本理論。

-通過生動的語言和實際例題,將抽象的數(shù)學(xué)概念具體化,增強(qiáng)學(xué)生的感性認(rèn)識。

-設(shè)計互動環(huán)節(jié),如在講解過程中穿插提問,鼓勵學(xué)生參與思考,提高課堂參與度。

2.討論法:組織學(xué)生進(jìn)行小組討論,鼓勵學(xué)生在小組內(nèi)分享對二次函數(shù)圖象性質(zhì)的理解和發(fā)現(xiàn)。

-分配具有挑戰(zhàn)性的問題,引導(dǎo)學(xué)生通過小組合作解決問題,培養(yǎng)學(xué)生的團(tuán)隊協(xié)作能力。

-通過小組間的交流,促進(jìn)學(xué)生之間的知識互補(bǔ)和經(jīng)驗共享,提高學(xué)生對知識點的深入理解。

3.實驗法:利用數(shù)學(xué)軟件或圖形計算器等工具,讓學(xué)生通過實驗探索二次函數(shù)圖象的變化規(guī)律。

-安排課堂實驗,讓學(xué)生通過實際操作觀察二次函數(shù)圖象的動態(tài)變化,增強(qiáng)學(xué)生的直觀感知。

-引導(dǎo)學(xué)生通過實驗總結(jié)規(guī)律,從實踐中抽象出理論知識,提高學(xué)生的探究能力。

教學(xué)手段:

1.多媒體設(shè)備:利用投影儀、電子白板等多媒體設(shè)備展示二次函數(shù)圖象,增強(qiáng)視覺效果,提高學(xué)生的學(xué)習(xí)興趣。

-制作多媒體教學(xué)課件,將復(fù)雜的圖象變化過程簡化,便于學(xué)生理解和記憶。

-使用動畫和互動軟件,讓學(xué)生能夠直觀地看到參數(shù)變化對二次函數(shù)圖象的影響。

2.教學(xué)軟件:運(yùn)用數(shù)學(xué)教學(xué)軟件,如GeoGebra、Desmos等,讓學(xué)生在課堂上實時觀察圖象變化,提高教學(xué)效率。

-利用軟件的交互性,讓學(xué)生自主探索不同參數(shù)下的圖象特征,增強(qiáng)學(xué)習(xí)的主動性和探索性。

-通過軟件生成的大數(shù)據(jù),引導(dǎo)學(xué)生進(jìn)行數(shù)據(jù)分析,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力。

3.網(wǎng)絡(luò)資源:結(jié)合網(wǎng)絡(luò)資源,提供豐富的學(xué)習(xí)材料,拓展學(xué)生的學(xué)習(xí)視野。

-推薦在線教育平臺和數(shù)學(xué)論壇,讓學(xué)生能夠接觸到更多優(yōu)秀的教學(xué)資源和同行的學(xué)習(xí)經(jīng)驗。

-利用網(wǎng)絡(luò)資源進(jìn)行翻轉(zhuǎn)課堂,讓學(xué)生在課前通過觀看視頻預(yù)習(xí),課堂時間主要用于討論和解決問題,提高課堂效率。教學(xué)流程課前準(zhǔn)備(5分鐘):

-教師準(zhǔn)備:制作多媒體課件,包括二次函數(shù)圖象的動畫演示、典型例題、互動練習(xí)等。準(zhǔn)備教學(xué)軟件和設(shè)備,確保課堂順利進(jìn)行。

-學(xué)生活動:預(yù)習(xí)課本22.1.3節(jié)內(nèi)容,嘗試完成預(yù)習(xí)清單,包括回憶一次函數(shù)的圖象性質(zhì),思考二次函數(shù)與一次函數(shù)的異同。

課中教學(xué)(40分鐘):

1.導(dǎo)入新課(5分鐘)

-教師活動:通過一個實際問題引入二次函數(shù)的概念,例如,拋物線運(yùn)動的軌跡方程。

-學(xué)生活動:學(xué)生思考問題,嘗試用已有知識解釋現(xiàn)象。

2.知識講解(10分鐘)

-教師活動:使用講授法,結(jié)合多媒體課件,介紹二次函數(shù)y=ax^2+k的圖象特征,強(qiáng)調(diào)a、k的取值對圖象的影響。

-學(xué)生活動:學(xué)生認(rèn)真聽講,記錄重點信息,對疑難問題進(jìn)行標(biāo)記。

3.圖象探究(10分鐘)

-教師活動:運(yùn)用教學(xué)軟件,動態(tài)演示二次函數(shù)圖象的生成過程,指出頂點、對稱軸等關(guān)鍵特征。

-學(xué)生活動:學(xué)生通過小組合作,使用教學(xué)軟件自主探索不同參數(shù)下的圖象變化。

4.例題解析(5分鐘)

-教師活動:選擇典型例題,展示解題步驟,特別強(qiáng)調(diào)如何利用頂點式解析二次函數(shù)圖象。

-學(xué)生活動:學(xué)生跟隨教師思路,思考解題策略,對解題步驟進(jìn)行總結(jié)。

5.小組討論(5分鐘)

-教師活動:布置小組討論題目,鼓勵學(xué)生分享各自解題思路,討論二次函數(shù)在實際問題中的應(yīng)用。

-學(xué)生活動:小組內(nèi)討論,每個成員發(fā)表見解,共同解決問題。

6.課堂練習(xí)(5分鐘)

-教師活動:發(fā)放課堂練習(xí)題,題目設(shè)計由淺入深,涵蓋本節(jié)課的重點難點。

-學(xué)生活動:獨(dú)立完成練習(xí),教師巡回指導(dǎo),及時解答學(xué)生疑問。

7.總結(jié)反饋(5分鐘)

-教師活動:通過提問方式,檢查學(xué)生對二次函數(shù)圖象和性質(zhì)的理解程度,總結(jié)本節(jié)課的要點。

-學(xué)生活動:積極回答問題,對所學(xué)知識進(jìn)行自我反饋。

課后作業(yè)(5分鐘):

-教師活動:布置課后作業(yè),包括必做題和選做題,鞏固課堂所學(xué)知識。

-學(xué)生活動:按時完成作業(yè),對課堂學(xué)習(xí)內(nèi)容進(jìn)行復(fù)習(xí)和鞏固。

用時總計:45分鐘

-課前準(zhǔn)備:5分鐘

-課中教學(xué):40分鐘(導(dǎo)入新課5分鐘,知識講解10分鐘,圖象探究10分鐘,例題解析5分鐘,小組討論5分鐘,課堂練習(xí)5分鐘,總結(jié)反饋5分鐘)

-課后作業(yè):5分鐘學(xué)生學(xué)習(xí)效果1.知識掌握:

-學(xué)生能夠理解二次函數(shù)y=ax^2+k的基本概念,掌握其圖象的開口方向、頂點位置、對稱軸及與y軸的交點等性質(zhì)。

-學(xué)生能夠運(yùn)用頂點式解析二次函數(shù)圖象,并能夠根據(jù)實際問題確定二次函數(shù)的解析式。

-學(xué)生能夠通過數(shù)形結(jié)合的方法,分析二次函數(shù)圖象在不同參數(shù)下的變化規(guī)律。

2.技能提升:

-學(xué)生在小組討論和合作探究中,提升了團(tuán)隊協(xié)作能力和溝通技巧。

-學(xué)生通過使用教學(xué)軟件和多媒體工具,增強(qiáng)了信息技術(shù)應(yīng)用能力和解決問題的能力。

-學(xué)生在解決實際問題時,能夠運(yùn)用二次函數(shù)知識,提高了解決問題的策略和方法。

3.思維發(fā)展:

-學(xué)生通過觀察、實驗、分析等數(shù)學(xué)活動,培養(yǎng)了邏輯推理和數(shù)學(xué)抽象思維能力。

-學(xué)生在探索二次函數(shù)圖象性質(zhì)的過程中,發(fā)展了空間想象力和數(shù)據(jù)分析能力。

-學(xué)生在問題解決中學(xué)會了如何提出問題、分析問題、解決問題,培養(yǎng)了創(chuàng)新思維和批判性思維。

4.情感態(tài)度:

-學(xué)生在學(xué)習(xí)過程中,對數(shù)學(xué)學(xué)習(xí)的興趣得到提升,增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的自信心。

-學(xué)生在成功解決二次函數(shù)相關(guān)問題時,獲得了成就感,激發(fā)了進(jìn)一步探索數(shù)學(xué)知識的欲望。

-學(xué)生通過解決實際問題,認(rèn)識到數(shù)學(xué)知識的實用性和價值,提高了學(xué)習(xí)數(shù)學(xué)的積極性和主動性。

5.價值觀培養(yǎng):

-學(xué)生在學(xué)習(xí)二次函數(shù)的過程中,體會到了數(shù)學(xué)的簡潔美和邏輯美,培養(yǎng)了審美情趣。

-學(xué)生在團(tuán)隊合作中學(xué)會了尊重他人、傾聽他人意見,培養(yǎng)了良好的集體主義精神。

-學(xué)生通過數(shù)學(xué)學(xué)習(xí),認(rèn)識到科學(xué)探究的重要性,激發(fā)了探索未知世界的熱情。重點題型整理1.求二次函數(shù)的頂點坐標(biāo)和對稱軸:

-題型1:已知二次函數(shù)y=ax^2+k的解析式,求其頂點坐標(biāo)和對稱軸。

-例如:已知函數(shù)y=2x^2-4,求頂點坐標(biāo)和對稱軸。

-解答:頂點坐標(biāo)為(0,-4),對稱軸為y軸。

-題型2:已知二次函數(shù)的圖象特征,求其解析式。

-例如:已知二次函數(shù)的頂點坐標(biāo)為(1,-3),且圖象開口向上,求函數(shù)的解析式。

-解答:設(shè)函數(shù)解析式為y=a(x-1)^2-3,由于圖象開口向上,a>0,取a=1,得到y(tǒng)=(x-1)^2-3。

2.二次函數(shù)圖象的平移:

-題型3:已知二次函數(shù)的解析式,求其在坐標(biāo)平面上的平移后的函數(shù)解析式。

-例如:已知函數(shù)y=x^2,求該函數(shù)向右平移2個單位,向上平移1個單位后的解析式。

-解答:原函數(shù)頂點為(0,0),平移后頂點為(2,1),因此新函數(shù)解析式為y=(x-2)^2+1。

3.二次函數(shù)與x軸、y軸的交點:

-題型4:已知二次函數(shù)的解析式,求其與x軸、y軸的交點。

-例如:已知函數(shù)y=-x^2+4x+3,求與x軸、y軸的交點。

-解答:與y軸交點為(0,3),與x軸交點為(-1,0)和(3,0)。

4.利用二次函數(shù)解決實際問題:

-題型5:根據(jù)實際問題,列出二次函數(shù)的解析式,并解決相關(guān)問題。

-例如:一個物體從地面以45度角拋出,其初始速度為10m/s,求物體的最大高度和落地時的水平距離。

-解答:物體的高度函數(shù)為y=-5(x-1)^2+5,最大高度為5m,落地時的水平距離為1m。

5.二次函數(shù)的最值問題:

-題型6:已知二次函數(shù)的解析式,求其最大值或最小值。

-例如:已知函數(shù)y=3x^2-12x+9,求最小值及其對應(yīng)的x值。

-解答:函數(shù)可化為y=3(x-2)^2-3,最小值為-3,當(dāng)x=2時取得。

補(bǔ)充說明:

-在求解頂點坐標(biāo)和對稱軸時,要熟練掌握頂點式的形式,即y=a(x-h)^2+k,其中(h,k)為頂點坐標(biāo),x=h為對稱軸。

-圖象的平移問題要理解平移的方向和距離對頂點坐標(biāo)的影響。

-與x軸、y軸的交點問題可以通過求解一元二次方程來解決。

-在解決實際問題時,要能夠?qū)栴}轉(zhuǎn)化為二次函數(shù)模型,并正確列出解析式。

-最值問題要掌握二次函數(shù)的開口方向與最值的關(guān)系,以及頂點坐標(biāo)與最值的關(guān)系。作業(yè)布置與反饋作業(yè)布置:

1.基礎(chǔ)鞏固題:

-完成課本22.1.3節(jié)的課后習(xí)題,包括二次函數(shù)圖象特征和性質(zhì)的理解。

-選擇2-3道典型的二次函數(shù)題目,鞏固對頂點式解析法的掌握。

2.實踐應(yīng)用題:

-根據(jù)實際問題,列出二次函數(shù)的解析式,并解決相關(guān)問題,如拋物線運(yùn)動問題。

-設(shè)計一個實際問題,要求學(xué)生運(yùn)用二次函數(shù)知識解決問題,培養(yǎng)學(xué)生的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論