版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆廣東汕尾市高三第十次模擬考試數(shù)學(xué)試題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立2.若集合,則=()A. B. C. D.3.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.4.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.5.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.6.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.7.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.38.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.9.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能10.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.11.秦九韶是我國南寧時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.12.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則=___________,_____________________________14.若隨機變量的分布列如表所示,則______,______.-10115.若、滿足約束條件,則的最小值為______.16.已知△的三個內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點A,與交于點B,,求的最大值.18.(12分)已知某種細(xì)菌的適宜生長溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.19.(12分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項和為,證明:.20.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.21.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.22.(10分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當(dāng)時,求(O為坐標(biāo)原點)面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計算能力,屬于中檔題.2.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎(chǔ)題.3.B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標(biāo)為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.4.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復(fù)數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運算法則的應(yīng)用,以及復(fù)數(shù)的模計算公式的應(yīng)用,屬于容易題.5.D【解析】
由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.6.A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.7.C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。8.A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.9.B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.10.B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.11.B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎(chǔ)題.12.D【解析】
根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.14.【解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.15.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標(biāo)函數(shù)取得最小時對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當(dāng)直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.16.【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當(dāng)且僅當(dāng)時,取等號又,所以令,則當(dāng),即時,當(dāng),即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點在于根據(jù)余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)的極坐標(biāo)方程為;的極坐標(biāo)方程為:(2)【解析】
(1)根據(jù),代入即可轉(zhuǎn)化.(2)由:,可得,代入與的極坐標(biāo)方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質(zhì)即可求解.【詳解】(1):,,的極坐標(biāo)方程為:,,的極坐標(biāo)方程為:,(2):,則(為銳角),,,,當(dāng)時取等號.【點睛】本題考查了極坐標(biāo)與直角坐標(biāo)的互化、二倍角公式、輔助角公式以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.18.(1)作圖見解析;更適合(2)(3)預(yù)報值為245【解析】
(1)由散點圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關(guān)于的散點圖,如圖所示:由散點圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時,計算可得;即溫度為27℃時,該種細(xì)菌的繁殖數(shù)量的預(yù)報值為245.【點睛】本題考查求非線性回歸方程及其應(yīng)用的問題,考查學(xué)生數(shù)據(jù)處理能力及運算能力,是一道中檔題.19.(1);(2)證明見解析.【解析】
(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時,方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時,,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時,方程有兩個不等實根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計算能力,是一道難題.20.(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標(biāo),得雙曲線的,再計算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學(xué)生的運算求解能力要求較高,解題時都是直接求出交點坐標(biāo).難度較大,屬于困難題.21.(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 發(fā)票托管服務(wù)合同模板
- 2024年度廣告投放與服務(wù)合同
- 2024年度石油化工CFG樁基礎(chǔ)施工合同
- 2024年度水果銷售代理合同:代理商的權(quán)益和義務(wù)的詳細(xì)規(guī)定
- 地板購銷合同范例
- 書院合作轉(zhuǎn)讓合同范例
- 受托支付人合同范例
- 代用茶采購合同范例
- 農(nóng)資賒銷合同范例
- 個人租鋪合同范例
- 【公開課】《農(nóng)業(yè)專題復(fù)習(xí)》【課件】
- 第7課《大雁歸來》課件(共15張ppt) 部編版語文八年級下冊
- 培訓(xùn)的方式和方法課件
- 三年級下冊口算天天100題(A4打印版)
- 三基選擇題(東南大學(xué)出版社)
- 2021年大唐集團招聘筆試試題及答案
- DBJ53/T-39-2020 云南省民用建筑節(jié)能設(shè)計標(biāo)準(zhǔn)
- 2022版義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)解讀課件PPT模板
- 實驗五 PCR擴增課件
- 馬拉松運動醫(yī)療支援培訓(xùn)課件
- 中醫(yī)藥宣傳手冊
評論
0/150
提交評論