版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024—2025學(xué)年上學(xué)期9月聯(lián)合教學(xué)質(zhì)量檢測(cè)高三數(shù)學(xué)本試卷4頁滿分150分,考試用時(shí)120分鐘注意事項(xiàng):1.答題前,先將自己的姓名、準(zhǔn)考證號(hào)填寫在試卷和答題卡上,并將準(zhǔn)考證號(hào)條形碼貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.3.非選擇題的作答:用黑色簽字筆直接答在答題卡上對(duì)應(yīng)的答題區(qū)域內(nèi).寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.4.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并上交.一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題所給的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.已知集合,集合,則()A. B.C. D.【答案】B【解析】【分析】先求得集合或,,結(jié)合交集與補(bǔ)集的運(yùn)算,即可求解.【詳解】由集合或,所以,可得.故選:.2.已知平面向量滿足:,且在上的投影向量為,則向量與向量的夾角為()A. B. C. D.【答案】C【解析】【分析】根據(jù)題意,由投影向量的定義可得,再由向量的夾角公式,代入計(jì)算,即可求解.【詳解】因?yàn)樵谏系耐队跋蛄繛?,即,所以,又,,所以,且,則.故選:C3.已知相互嚙合的兩個(gè)齒輪,大輪有45齒,小輪有30齒.如果大輪的轉(zhuǎn)速為180(轉(zhuǎn)/分),小輪的半徑為10cm,那么小輪周上一點(diǎn)每1s轉(zhuǎn)過的弧長是()cm.A. B. C. D.【答案】B【解析】【分析】通過大輪的速,得到小輪的轉(zhuǎn)速,從而求出小輪上每一點(diǎn)的轉(zhuǎn)速,再根據(jù)弧長公式計(jì)算可得.【詳解】大輪有45齒,小輪有30齒,…當(dāng)大輪轉(zhuǎn)動(dòng)一周時(shí)小輪轉(zhuǎn)動(dòng)周,當(dāng)大輪的轉(zhuǎn)速為180時(shí),小輪轉(zhuǎn)速為,小輪周上一點(diǎn)每1s轉(zhuǎn)過的弧度數(shù)為:.又小輪的半徑為10cm,所以小輪周上一點(diǎn)每1s轉(zhuǎn)過的弧長為:.故選:B4.為了協(xié)調(diào)城鄉(xiāng)教育資源的平衡,政府決定派甲、乙、丙等六名教師去往包括希望中學(xué)在內(nèi)的三所學(xué)校支教(每所學(xué)校至少安排一名教師).受某些因素影響,甲乙教師不被安排在同一所學(xué)校,丙教師不去往希望中學(xué),則不同的分配方法有()種.A. B. C. D.【答案】B【解析】【分析】采用分類與分步計(jì)數(shù)原理,先排丙共有種分法,再分為甲、丙在同一所學(xué)校和甲、丙不在同一所學(xué)校兩類,每類分別討論,最后相加得到結(jié)果.【詳解】先將丙安排在一所學(xué)校,有種分法;若甲、丙在同一所學(xué)校,那么乙就有種選法,剩下3名教師可能分別有3、2、1人在最后一所學(xué)校(記為X校),分別對(duì)應(yīng)有1(3人均在X校)、(2人在X校,另1人隨便排)、(1人在X校,另2人分在同一所學(xué)校或不在同一所學(xué)校),共種排法;若甲、丙不在同一所學(xué)校,則甲有種選法,若乙與丙在同一所學(xué)校,則剩下3名教師按上面方法有19種排法;若乙與丙不在同一所學(xué)校,則有剩下3人可分別分1、2、3組,分別有、、種排法,故共有:種排法.故選:B.5.已知數(shù)列滿足,且,則的通項(xiàng)公式為()A. B. C. D.【答案】C【解析】【分析】給兩邊同時(shí)加一個(gè)數(shù),構(gòu)造成等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式求解的通項(xiàng)公式即可.【詳解】設(shè),即,所以,解得,所以,所以是首項(xiàng)為,公比為的等比數(shù)列,所以,所以.故選:C.6.如圖所示,在平行六面體中,為與的交點(diǎn),若,則等于()A. B.C. D.【答案】D【解析】【分析】根據(jù)空間向量的線性運(yùn)算即可得到答案.【詳解】因?yàn)闉榕c的交點(diǎn),所以.故選:D.7.已知是數(shù)列的前項(xiàng)和,若,數(shù)列的首項(xiàng),,則()A. B.C. D.【答案】A【解析】【分析】根據(jù)二項(xiàng)式定理可知,再根據(jù)二項(xiàng)式系數(shù)的性質(zhì)可得,再根據(jù)遞推公式可得,利用分組求和的方法可得解.【詳解】由已知,則,則,再根據(jù)二項(xiàng)式的展開式中二項(xiàng)式系數(shù)的性質(zhì)可知,則,又,可得,且,則,所以當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),,則.故選:A.8.已知函數(shù),若不等式的解集中恰有兩個(gè)不同的正整數(shù)解,則實(shí)數(shù)的取值范圍是()A. B.C. D.【答案】C【解析】【分析】不等式可化為,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù),的圖象,由條件結(jié)合圖象列不等式求的取值范圍.【詳解】函數(shù)的定義域?yàn)?,不等式化為:.令,,,故函?shù)在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時(shí),gx>0,當(dāng)時(shí),gx當(dāng)時(shí),gx<0當(dāng)時(shí),,當(dāng),且時(shí),,畫出及?x的大致圖象如下,因?yàn)椴坏仁降慕饧星∮袃蓚€(gè)不同的正整數(shù)解,故正整數(shù)解為.故,即.故.故選:C.二、多項(xiàng)選擇題(本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對(duì)得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分)9.歐拉是科學(xué)史上最多才的一位杰出的數(shù)學(xué)家,他發(fā)明的公式為,i虛數(shù)單位,將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,這個(gè)公式也被譽(yù)為“數(shù)學(xué)中的天橋”(為自然對(duì)數(shù)的底數(shù),i為虛數(shù)單位),依據(jù)上述公式,則下列結(jié)論中正確的是()A.復(fù)數(shù)為純虛數(shù) B.復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限C.復(fù)數(shù)的共軛復(fù)數(shù)為 D.復(fù)數(shù)的模長為1【答案】ABD【解析】【分析】根據(jù)給定的公式,結(jié)合復(fù)數(shù)的相關(guān)概念逐項(xiàng)分析判斷即得.【詳解】A選項(xiàng):是純虛數(shù),A選項(xiàng)正確;B選項(xiàng):而,即,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第二象限,B選項(xiàng)正確;C選項(xiàng):,則復(fù)數(shù)的共軛復(fù)數(shù)為,C選項(xiàng)錯(cuò)誤;D選項(xiàng):D選項(xiàng)正確;故選:ABD.10.已知,為正實(shí)數(shù),且,,,則()A.的最大值為4 B.的最小值為C.的最小值為2 D.的最小值為【答案】BC【解析】【分析】對(duì)A:利用基本不等式判斷;對(duì)B:利用基本不等式結(jié)合“1”的代換判斷;對(duì)C:利用因式分解結(jié)合基本不等式判斷;對(duì)D:利用基本不等式結(jié)合“1”的代換判斷.【詳解】由,,,即有;對(duì)A:,即,即,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為4,故A錯(cuò)誤;對(duì)B:由,故,則,當(dāng)且僅當(dāng),即,時(shí),等號(hào)成立,故B正確;對(duì)C:由,故,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故C正確;對(duì)D:,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故D錯(cuò)誤.故選:BC11.已知拋物線的焦點(diǎn)為,準(zhǔn)線交軸于點(diǎn),直線經(jīng)過且與交于兩點(diǎn),其中點(diǎn)A在第一象限,線段的中點(diǎn)在軸上的射影為點(diǎn).若,則()A.的斜率為B.是銳角三角形C.四邊形的面積是D.【答案】ABD【解析】【分析】根據(jù)題意分析可知為等邊三角形,即可得直線的傾斜角和斜率,進(jìn)而判斷A;可知直線的方程,聯(lián)立方程求點(diǎn)的坐標(biāo),求相應(yīng)長度,結(jié)合長度判斷BD;根據(jù)面積關(guān)系判斷C.【詳解】由題意可知:拋物線的焦點(diǎn)為,準(zhǔn)線為,即,設(shè),則,可得,因?yàn)椋矗芍獮榈冗吶切?,即,且∥x軸,可知直線的傾斜角為,斜率為,故A正確;則直線,聯(lián)立方程,解得或,即,,則,可得,在中,,且,可知為最大角,且為銳角,所以是銳角三角形,故B正確;四邊形的面積為,故C錯(cuò)誤;因?yàn)?,所以,故D正確;故選:ABD.【點(diǎn)睛】方法點(diǎn)睛:有關(guān)圓錐曲線弦長、面積問題求解方法(1)涉及弦長的問題中,應(yīng)熟練地利用根與系數(shù)的關(guān)系、設(shè)而不求計(jì)算弦長;涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)的關(guān)系、設(shè)而不求法簡化運(yùn)算;涉及過焦點(diǎn)的弦的問題,可考慮用圓錐曲線的定義求解;(2)面積問題常采用底高,其中底往往是弦長,而高用點(diǎn)到直線距離求解即可,選擇底很重要,選擇容易坐標(biāo)化的弦長為底.有時(shí)根據(jù)所研究三角形的位置,靈活選擇其面積表達(dá)形式,若求多邊形的面積問題,常轉(zhuǎn)化為三角形的面積后進(jìn)行求解;(3)在求解有關(guān)直線與圓錐曲線的問題時(shí),應(yīng)注意數(shù)形結(jié)合、分類與整合、轉(zhuǎn)化與化歸及函數(shù)與方程思想的應(yīng)用.三、填空題(本大題共3小題,每小題5分,共15分)12.已知數(shù)列的首項(xiàng)為,,則數(shù)列的前2024項(xiàng)和為________________.【答案】【解析】【分析】結(jié)合三角函數(shù)性質(zhì)分奇偶討論可得數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法求和即可得解.【詳解】化簡知,,當(dāng),時(shí),,,∴,,即為奇數(shù)時(shí),數(shù)列是常數(shù)列,,∴當(dāng)為奇數(shù)時(shí),;又∵當(dāng)為偶數(shù)時(shí),為奇數(shù),,∴,綜上所述,數(shù)列的通項(xiàng)公式為,∴數(shù)列的通項(xiàng)公式為,設(shè)數(shù)列的前項(xiàng)和為,則,即有,兩式相減可得,則,故.故答案為:13.已知直線l與雙曲線交于A、B兩點(diǎn),且弦AB的中點(diǎn)為,則直線l的方程為________.【答案】【解析】【分析】設(shè)出A,B兩點(diǎn)的坐標(biāo),代入雙曲線方程,然后利用點(diǎn)差法得到直線l的斜率即可求解直線方程.【詳解】設(shè)Ax1,則,,又,
,兩式相減,得,即,整理得,直線l的斜率為,直線l的方程為,化簡得,經(jīng)檢驗(yàn)滿足題意.故答案為:.14.一段路上有100個(gè)路燈一開始它們都是關(guān)著的,有100名行人先后經(jīng)過這段路,對(duì)每個(gè),當(dāng)?shù)诿腥私?jīng)過時(shí),他將所有下標(biāo)為的倍數(shù)的路燈的開關(guān)狀態(tài)改變.問當(dāng)?shù)?00名行人經(jīng)過后,有______個(gè)路燈處于開著的狀態(tài).【答案】10【解析】【分析】將最終“燈開”轉(zhuǎn)化為“當(dāng)且僅當(dāng)?shù)恼s數(shù)個(gè)數(shù)為奇數(shù)”,由此求得開啟的路燈數(shù)量.【詳解】固定每個(gè),考察路燈.根據(jù)題意,被第名行人改變開關(guān)狀態(tài),當(dāng)且僅當(dāng)為的正約數(shù)(注意的正約數(shù)都不超過100,故每個(gè)正約數(shù)均可對(duì)應(yīng)到某一名行人).所以最終為開,當(dāng)且僅當(dāng)?shù)恼s數(shù)個(gè)數(shù)為奇數(shù).以下證明這等價(jià)于為平方數(shù).事實(shí)上,的每個(gè)正約數(shù)均可對(duì)應(yīng)到正約數(shù),其中,對(duì)應(yīng)到自身當(dāng)且僅當(dāng),即,這意味著,的正約數(shù)個(gè)數(shù)為奇數(shù)當(dāng)且僅當(dāng)是的正約數(shù),即為平方數(shù).因此,當(dāng)所有人都經(jīng)過后,恰好那些下標(biāo)為平方數(shù)1,4,9,…,100的路燈是開著的,所以共有10個(gè)路燈處于開著狀態(tài).故答案為:【點(diǎn)睛】思路點(diǎn)睛:將路燈最終是開著的,轉(zhuǎn)化為“的正約數(shù)個(gè)數(shù)為奇數(shù)”;重視“舉例”,利用“舉例”檢驗(yàn)是否理解和正確運(yùn)用題意.四、解答題(本大題共5小題,共77分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟)15.記的內(nèi)角,,的對(duì)邊分別為,,,已知.(1)求;(2)若,,求的周長.【答案】(1)(2)【解析】【分析】(1)根據(jù)條件,利用正弦定理得到,再利用余弦定理,即可求解;(2)根據(jù)條件,利用輔助角公式得到,進(jìn)而得到,從而有,再利用正弦定理,即可求出結(jié)果.【小問1詳解】在中,由正弦定理得.因?yàn)?,所以?化簡得.在中,由余弦定理得.又因?yàn)?,所?【小問2詳解】由,可得,又B∈0,π,所以,得到,即,所以,,又,由正弦定理得,得到,解得,,故的周長為.16.足球比賽積分規(guī)則為:球隊(duì)勝一場積分,平一場積分,負(fù)一場積分.常州龍城足球隊(duì)年月將迎來主場與隊(duì)和客場與隊(duì)的兩場比賽.根據(jù)前期比賽成績,常州龍城隊(duì)主場與隊(duì)比賽:勝的概率為,平的概率為,負(fù)的概率為;客場與隊(duì)比賽:勝的概率為,平的概率為,負(fù)的概率為,且兩場比賽結(jié)果相互獨(dú)立.(1)求常州龍城隊(duì)月主場與隊(duì)比賽獲得積分超過客場與隊(duì)比賽獲得積分的概率;(2)用表示常州龍城隊(duì)月與隊(duì)和隊(duì)比賽獲得積分之和,求的分布列與期望.【答案】(1)(2)分布列見解析,數(shù)學(xué)期望為【解析】【分析】(1)找出所有符合題意的情況及其對(duì)應(yīng)概率后求和即可得;(2)得到的所有可能取值及其對(duì)應(yīng)概率后即可得其分布列,利用分布列即可得其期望.【小問1詳解】設(shè)事件“常州龍城隊(duì)主場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)主場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)主場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)客場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)客場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)客場與隊(duì)比賽獲得積分為分”,事件“常州龍城隊(duì)七月主場與隊(duì)比賽獲得積分超過客場與隊(duì)比賽獲得積分”,,,,則,∴常州龍城隊(duì)七月主場與隊(duì)比賽獲得積分超過客場與隊(duì)比賽獲得積分的概率為;【小問2詳解】由題意可知的所有可能取值為,,,,,,,∴的分布列為:∴17.如圖,平面,,點(diǎn)分別為的中點(diǎn).(1)求證:平面;(2)求平面與平面夾角的正弦值;(3)若為線段上的點(diǎn),且直線與平面所成的角為,求到平面的距離.【答案】(1)證明見解析;(2)(3)【解析】【分析】(1)連接,證得,利用用線面判定定理,即可得到平面.(2)以為原點(diǎn),分別以的方向?yàn)檩S,軸,軸的正方向的空間直角坐標(biāo)系.求得平面和平面法向量,利用向量的夾角公式,即可求解.(3)設(shè),則,從而,由(2)知平面的法向量為,利用向量的夾角公式,得到關(guān)于的方程,即可求解.【小問1詳解】連接,因?yàn)?,所以,又因?yàn)?,所以為平行四邊?由點(diǎn)和分別為和的中點(diǎn),可得且,因?yàn)闉镃D的中點(diǎn),所以且,可得且,即四邊形為平行四邊形,所以,又平面,平面,所以平面.【小問2詳解】因?yàn)槠矫?,,可以建立以為原點(diǎn),分別以的方向?yàn)檩S,軸,軸的正方向的空間直角坐標(biāo)系.依題意可得,.,設(shè)為平面的法向量,則,即,不妨設(shè),可得,設(shè)為平面的法向量,則,即,不妨設(shè),可得,.,于是.所以,二面角的正弦值為.【小問3詳解】設(shè),即,則.從而.由(2)知平面的法向量為,由題意,,即,整理得,解得或,因?yàn)樗裕?則N到平面的距離為.【點(diǎn)睛】18.已知點(diǎn)在拋物線上,按照如下方法依次構(gòu)造點(diǎn),過點(diǎn)作斜率為的直線與拋物線交于另一點(diǎn),令為關(guān)于軸的對(duì)稱點(diǎn),記的坐標(biāo)為.(1)求的值;(2)求證:數(shù)列是等差數(shù)列,并求;(3)求的面積.【答案】(1)1(2)證明見解析;,(3)16【解析】【分析】(1)由點(diǎn)在拋物線上,代入即可求解;(2)方法一:求得過,且斜率為的直線方程,,聯(lián)立方程組,求得方程的兩根,得到,結(jié)合等差數(shù)列的定義,即可得證;方法二:由點(diǎn)在拋物線上,得到方程組,兩式相減,結(jié)合向量公式,得到,即可得證;(3)由(2)得到,結(jié)合梯形和的面積,求得的面積,即可求解.【小問1詳解】解:因?yàn)辄c(diǎn)在拋物線上,可得,解得.【小問2詳解】證明:由(1)知:,即,方法一:因?yàn)辄c(diǎn)在拋物線上,則,且,過,且斜率為的直線,聯(lián)立方程組,可得,解得或,所以,可得,所以數(shù)列是以首項(xiàng)為2,公差為4的等差數(shù)列,所以,.方法二:因?yàn)辄c(diǎn)在拋物線上,所以,兩式相減得:.所以:可得,所以數(shù)列是以首項(xiàng)為2,公差為4的等差數(shù)列,所以,.【小問3詳解】解:由(2)知:,可得梯形的面積為:即,同理可得,又由梯形的面積為:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智能家居安防系統(tǒng)試用合同3篇
- 二零二五版辦公家具租賃與辦公空間智能化改造合同2篇
- 二零二五年度國際商務(wù)考察合同范本3篇
- 二零二五年度金融機(jī)構(gòu)貸款合同風(fēng)險(xiǎn)評(píng)估與管理指南3篇
- 二零二五年度某零售商與第三方支付平臺(tái)就支付服務(wù)合作合同2篇
- 敬老院二零二五年度土地承包及社區(qū)服務(wù)一體化合同3篇
- 二零二五年船舶通信設(shè)備維護(hù)船員聘用合同3篇
- 二零二五年智慧交通項(xiàng)目合作開發(fā)合同范本3篇
- 二零二五年度搬家搬運(yùn)服務(wù)合同范本2篇
- 二零二五版導(dǎo)游人員旅游活動(dòng)組織聘用合同3篇
- 深圳2024-2025學(xué)年度四年級(jí)第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲(chǔ)能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- 初中班主任案例分析4篇
- 公司7s管理組織實(shí)施方案
- Q∕GDW 12147-2021 電網(wǎng)智能業(yè)務(wù)終端接入規(guī)范
- 仁愛英語單詞默寫本(全六冊(cè))英譯漢
- 公園廣場綠地文化設(shè)施維修改造工程施工部署及進(jìn)度計(jì)劃
- 塑料件缺陷匯總
評(píng)論
0/150
提交評(píng)論