版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省遵義市航天高級中學(xué)2024屆第二學(xué)期高三期中考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.2.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.3.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.4.已知,其中是虛數(shù)單位,則對應(yīng)的點的坐標為()A. B. C. D.5.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.6.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立8.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或9.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.10.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行11.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題12.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.15.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.16.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.18.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項和Tn.19.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.20.(12分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關(guān)系式;(II)點與點關(guān)于坐標原點對稱.若當時,的面積取到最大值,求橢圓的離心率.21.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.22.(10分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計獲獎6不獲獎合計400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價轉(zhuǎn)化,找到了問題的突破口.2、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.3、C【解析】
根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.4、C【解析】
利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點的坐標為,,.故選:.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.5、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結(jié)合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點坐標公式是解答的關(guān)鍵,著重考查了推理與運算能力.6、B【解析】
由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負,以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B【點睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.7、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.8、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.9、B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復(fù)數(shù)的乘法、除法運算,考查學(xué)生的基本計算能力,是一道容易題.10、B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.11、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于中檔題.12、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14、【解析】
利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:【點睛】本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.15、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.16、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當時,,;當時,函數(shù)單調(diào)遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數(shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當時,,故函數(shù)在上單調(diào)遞增,故當時,;當時,函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當時,函數(shù)有極小值.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.18、(1).(2)【解析】
(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結(jié)果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學(xué)運算能力.屬于中檔題.19、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.20、(Ⅰ)(II)【解析】
(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結(jié)果;(Ⅱ)因點與點關(guān)于坐標原點對稱,可得的面積是的面積的兩倍,再由當時,的面積取到最大值,可得,進而可得原點到直線的距離,再由點到直線的距離公式,以及(I)的結(jié)果,即可求解.【詳解】(I)由,得,則化簡整理,得;(Ⅱ)因點與點關(guān)于坐標原點對稱,故的面積是的面積的兩倍.所以當時,的面積取到最大值,此時,從而原點到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點睛】本題主要考查直線與橢圓的位置關(guān)系,以及橢圓的簡單性質(zhì),通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達定理、判別式等求解,屬于中檔試題.21、(1);(2)或.【解析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級數(shù)學(xué)下冊完整教案
- 三年級上冊全冊教案
- 高一信息技術(shù)教案(全套)
- 能源項目風(fēng)險管理 課件 2-能源項目風(fēng)險規(guī)劃管理
- 高一化學(xué)成長訓(xùn)練:第一單元核外電子排布與周期律
- 2024屆四川巫溪縣白馬中學(xué)高考沖刺押題(最后一卷)化學(xué)試卷含解析
- 2024高中語文第三單元因聲求氣吟詠詩韻第14課自主賞析閣夜課時作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考地理一輪復(fù)習(xí)第二部分人文地理-重在運用第二章城市與城市化第18講城市內(nèi)部空間結(jié)構(gòu)與不同等級城市的服務(wù)功學(xué)案新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第3章自然界及材料家族中的元素第3講硫及其化合物學(xué)案魯科版
- 2025高考數(shù)學(xué)考點剖析精創(chuàng)專題卷四-平面向量【含答案】
- 2025年中國華能集團有限公司招聘筆試參考題庫含答案解析
- 光伏安裝施工合同范本
- 北京郵電大學(xué)《數(shù)學(xué)物理方法概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年無錫市數(shù)學(xué)三年級第一學(xué)期期末質(zhì)量檢測試題含解析
- 2024年簡易別墅買賣合同樣本
- 2025中考數(shù)學(xué)考點題型歸納(幾何證明大題)
- 人教版(2024)數(shù)學(xué)七年級上冊期末測試卷(含答案)
- 醫(yī)院護理10s管理
- 2024-2025學(xué)年度第一學(xué)期二年級數(shù)學(xué)寒假作業(yè)有答案(共20天)
- 2024年質(zhì)量管理考核辦法及實施細則(3篇)
- 2024年學(xué)校意識形態(tài)工作總結(jié)(3篇)
評論
0/150
提交評論