![寧夏吳忠市2025屆高三第二次模擬考試數學試卷含解析_第1頁](http://file4.renrendoc.com/view12/M02/2D/3A/wKhkGWdA1uiAAUoSAAHghjhQNhU739.jpg)
![寧夏吳忠市2025屆高三第二次模擬考試數學試卷含解析_第2頁](http://file4.renrendoc.com/view12/M02/2D/3A/wKhkGWdA1uiAAUoSAAHghjhQNhU7392.jpg)
![寧夏吳忠市2025屆高三第二次模擬考試數學試卷含解析_第3頁](http://file4.renrendoc.com/view12/M02/2D/3A/wKhkGWdA1uiAAUoSAAHghjhQNhU7393.jpg)
![寧夏吳忠市2025屆高三第二次模擬考試數學試卷含解析_第4頁](http://file4.renrendoc.com/view12/M02/2D/3A/wKhkGWdA1uiAAUoSAAHghjhQNhU7394.jpg)
![寧夏吳忠市2025屆高三第二次模擬考試數學試卷含解析_第5頁](http://file4.renrendoc.com/view12/M02/2D/3A/wKhkGWdA1uiAAUoSAAHghjhQNhU7395.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
寧夏吳忠市2025屆高三第二次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.53.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()4.把函數的圖象向右平移個單位,得到函數的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數是()A.1 B.2 C.3 D.45.已知,則的大小關系為()A. B. C. D.6.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.8.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.29.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.10.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.11.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.12.已知在中,角的對邊分別為,若函數存在極值,則角的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.14.若變量x,y滿足:,且滿足,則參數t的取值范圍為_______.15.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.16.已知函數在上單調遞增,則實數a值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.18.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.19.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.20.(12分)數列的前項和為,且.數列滿足,其前項和為.(1)求數列與的通項公式;(2)設,求數列的前項和.21.(12分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.22.(10分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題2、A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.3、B【解析】
如圖所示:連接,根據垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.4、C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導,并得到導函數的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C【點睛】本題考查三角函數的圖像變換,考查代入檢驗法判斷余弦型函數的對稱軸和對稱中心,考查導函數的幾何意義的應用.5、A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..6、D【解析】
由題意利用函數的圖象變換規(guī)律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規(guī)律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.7、C【解析】
根據三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.8、B【解析】由題意或4,則,故選B.9、A【解析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.10、B【解析】
設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.11、B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.12、C【解析】
求出導函數,由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數性質可得結論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.14、【解析】
根據變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉與可行域有交點即可,再結合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應用,還考查了轉化運算求解的能力,屬于中檔題.15、【解析】
先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區(qū)分展開式中各項系數的和與各二項式系數和,屬于基礎題.16、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.【點睛】本題考查函數的單調性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數的性質易求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據三角形的面積公式求出結果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎題.18、(1);(2).【解析】試題分析:(1)利用已知及平面向量數量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數分別為,,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道容易題.20、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導出數列為等比數列,確定該數列的公比,利用等比數列的通項公式可求得數列的通項公式,再利用對數的運算性質可得出數列的通項公式;(2)運用等差數列的求和公式,運用數列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數列是首項為,公比為的等比數列,.;(2)由(1)知數列是首項為,公差為的等差數列,.,.所以.【點睛】本題考查數列的遞推式的運用,注意結合等比數列的定義和通項公式,考查數列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.21、(1)或;(2)或.【解析】試題分析:(1)根據絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市房產買賣合同
- 個人健康與財產雙重保障合同范文
- 個人借款合同范本:企業(yè)與個人
- 2025年電氣設備操作安全管理協議
- 上海市房屋裝修工程合同
- 個人水利水電工程承包合同范文
- 中保人壽松鶴養(yǎng)老保險合同細則
- 專利申請代理服務合同樣本
- 個人與公司借款合同協議
- 上海市商業(yè)地產轉租合同模板
- 工程數學試卷及答案
- DB11T 211-2017 園林綠化用植物材料 木本苗
- 《PLC應用技術(西門子S7-1200)第二版》全套教學課件
- 第01講 直線的方程(九大題型)(練習)
- 市政道路監(jiān)理大綱34368
- 《基礎會計》教學課件-整套教程電子講義
- 人教版七年級上冊數學全冊課時練習帶答案
- GB/T 44143-2024科技人才評價規(guī)范
- 對醫(yī)院領導的批評意見怎么寫更合適范文(6篇)
- 賬期協議書賬期合同書
- 2024年常德職業(yè)技術學院單招職業(yè)適應性測試題庫完整
評論
0/150
提交評論