2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷_第1頁
2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷_第2頁
2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷_第3頁
2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷_第4頁
2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第1頁(共1頁)2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷一、選擇題(本題共10小題,每小題4分,共40分.每小題都有四個選項,其中有且只有一個選項正確)1.(4分)冬季奧林匹克運動會是世界規(guī)模最大的冬季綜合性運動會,2022年北京冬奧會的聲音是人類命運共同體的贊歌,是對“更快、更高、更強(qiáng)、更團(tuán)結(jié)”的奧運精神的中國宣揚(yáng).下列四個圖分別是四屆冬奧會圖標(biāo)中的一部分()A. B. C. D.2.(4分)下列運算正確的是()A.5a2﹣3a=2a B.2a+3b=5ab C.(ab3)2=a2b6 D.(a+2)2=a2+43.(4分)如圖,四邊形ABCD的對角線AC,BD交于點O,連接AE,OE()A.∠AEB B.∠AOD C.∠OEC D.∠EOC4.(4分)到△ABC的三條邊距離相等的點是△ABC的()A.三條中線交點 B.三條角平分線交點 C.三條高的交點 D.三條邊的垂直平分線交點5.(4分)如圖,工人師傅設(shè)計了一種測零件內(nèi)徑AB的卡鉗,卡鉗交叉點O為AA'、BB'的中點,就可以知道該零件內(nèi)徑AB的長度.依據(jù)的數(shù)學(xué)基本事實是()A.兩邊及其夾角分別相等的兩個三角形全等 B.兩角及其夾邊分別相等的兩個三角形全等 C.兩條直線被一組平行線所截,所得的對應(yīng)線段成比例 D.兩點之間線段最短6.(4分)閱讀以下作圖步驟:①在OA和OB上分別截取OC,OD,使OC=OD;②分別以C,D為圓心,以大于,兩弧在∠AOB內(nèi)交于點M;③作射線OM,連接CM,DM根據(jù)以上作圖,一定可以推得的結(jié)論是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DM C.∠1=∠2且OD=DM D.∠2=∠3且OD=DM7.(4分)已知a=1631,b=841,c=461,則a,b,c的大小關(guān)系是()A.a(chǎn)>b>c B.a(chǎn)>c>b C.a(chǎn)<b<c D.b>c>a8.(4分)觀察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定規(guī)律排列的一組數(shù):250、251、252、…、299、2100.若250=a,用含a的式子表示這組數(shù)的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a9.(4分)如圖,在△ABC中,AB=AC,將△ABM繞點A逆時針旋轉(zhuǎn)得到△ACN,點M的對應(yīng)點為點N,則下列結(jié)論一定正確的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC10.(4分)小梧要在一塊矩形場地上晾曬傳統(tǒng)工藝制作的蠟染布.如圖所示,該矩形場地北側(cè)安有間隔相等的7根柵欄,其中4根柵欄處與南側(cè)的兩角分別固定了高度相同的木桿a,b,c,d,e,繩子穿過木桿上的孔可以被固定.小梧想用繩子在南側(cè)的兩條木桿e,f和北側(cè)的一條木桿上連出一個三角形,那么他在北側(cè)木桿中應(yīng)優(yōu)先選擇()A.a(chǎn) B.b C.c D.d二、填空題(本大題有6小題,每小題4分,共24分)11.(4分)如圖,鋼架橋的設(shè)計中采用了三角形的結(jié)構(gòu),其數(shù)學(xué)道理是.12.(4分)若y2﹣6y﹣k是完全平方式,則k的值等于.13.(4分)如圖,點F在正五邊形ABCDE的內(nèi)部,△ABF為等邊三角形.14.(4分)如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點.已知線段AB是等腰三角形△ABC的一邊,△ABC的三個頂點都在正方形網(wǎng)格的格點上.15.(4分)已知:△ABC中,∠BAC=90°,AB=AC.如圖(0,4)、B(﹣2,0),則C點的坐標(biāo)為.16.(4分)如圖,四邊形ABCD中,AB=AC,BE⊥AC于點F,交CD于點E,EA平分∠DEF.若BF=7,DE=3.三、解答題(本大題有9小題,共86分)17.(8分)(1)m3?m?m6+(﹣m4)2+4(﹣m2)4;(2)用乘法公式簡便計算:96×104.18.(8分)化簡求值:(2x+3y)2﹣(2x+3y)(2x﹣y),其中,y=﹣2.19.(8分)已知:如圖,點D,E在△ABC的邊BC上,AD=AE.求證:BD=CE.20.(8分)如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(2,3)1B1C1并寫出頂點A1,B1,C1的坐標(biāo).21.(8分)4張長為a、寬為b(a>b)的長方形紙片,按如圖的方式拼成一個邊長為(a+b),圖中空白部分的面積為S1,陰影部分的面積為S2.(1)若a=3,b=1,則S1=.(2)若S1=2S2,求a與b滿足關(guān)系:.22.(10分)觀察以下等式:第1個等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2個等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3個等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4個等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上規(guī)律,解決下列問題:(1)寫出第5個等式:;(2)寫出你猜想的第n個等式(用含n的式子表示),并證明.23.(10分)綜合與實踐:問題探究:(1)如圖1是古希臘數(shù)學(xué)家歐幾里得所著的《幾何原本》第1卷命題9“平分一個已知角,”即:作一個已知角的平分線,使得OC=OD,連接CD,則OE就是∠AOB的平分線.請寫出OE平分∠AOB的依據(jù):;類比遷移:(2)小明根據(jù)以上信息研究發(fā)現(xiàn):△CDE不一定必須是等邊三角形,只需CE=DE即可;我國古代已經(jīng)用角尺平分任意角,做法如下:如圖3,OB上分別取OM=ON,移動角尺,N重合,則過角尺頂點C的射線OC是∠AOB的平分線;拓展實踐:(3)小明將研究應(yīng)用于實踐.如圖4,校園的兩條小路AB和AC,現(xiàn)在學(xué)校要在兩條小路之間安裝一盞路燈E,使得路燈照亮兩條小路(兩條小路一樣亮),試問路燈應(yīng)該安裝在哪個位置?請用不帶刻度的直尺和圓規(guī)在對應(yīng)的示意圖5中作出路燈E的位置.(保留作圖痕跡,不寫作法)24.(12分)將一個三角形沿著其中一個頂點及其對邊上的一點所在的直線折疊,若折疊后原三角形的一邊垂直于這條對邊,則稱這條直線是該三角形的“對垂線”.(1)如圖1,AD是等邊△ABC的對垂線,把△ABC沿直線AD折疊后,求∠BAD的度數(shù);(2)如圖2,在△ABC中,∠BAC=90°,且AB=AD,若∠B=2∠DAC,并說明理由.25.(14分)已知線段AB和點C,CA=CD,CB=CE,AE,BD相交于點P.(1)如圖1,若點C在線段AB上,①求證:∠A=∠D;②若∠DCA=60°,求∠DPA的度數(shù);(2)如圖2,點C是線段AB上方的一點,且保持∠DCA=60°

2024-2025學(xué)年福建省廈門十一中八年級(上)期中數(shù)學(xué)試卷參考答案與試題解析一、選擇題(本題共10小題,每小題4分,共40分.每小題都有四個選項,其中有且只有一個選項正確)1.(4分)冬季奧林匹克運動會是世界規(guī)模最大的冬季綜合性運動會,2022年北京冬奧會的聲音是人類命運共同體的贊歌,是對“更快、更高、更強(qiáng)、更團(tuán)結(jié)”的奧運精神的中國宣揚(yáng).下列四個圖分別是四屆冬奧會圖標(biāo)中的一部分()A. B. C. D.【解答】解:A,C,D選項中的圖形都不能找到這樣的一條直線,直線兩旁的部分能夠互相重合;B選項中的圖形能找到這樣的一條直線,使圖形沿一條直線折疊,所以是軸對稱圖形;故選:B.2.(4分)下列運算正確的是()A.5a2﹣3a=2a B.2a+3b=5ab C.(ab3)2=a2b6 D.(a+2)2=a2+4【解答】解:A.5a2﹣7a無法合并,故此選項不合題意;B.2a+3b無法合并;C.(ab2)2=a2b4,故此選項符合題意;D.(a+2)2=a7+4a+4,故此選項不合題意;故選:C.3.(4分)如圖,四邊形ABCD的對角線AC,BD交于點O,連接AE,OE()A.∠AEB B.∠AOD C.∠OEC D.∠EOC【解答】解:△AEO的外角是∠EOC,故選:D.4.(4分)到△ABC的三條邊距離相等的點是△ABC的()A.三條中線交點 B.三條角平分線交點 C.三條高的交點 D.三條邊的垂直平分線交點【解答】解:∵到△ABC的三條邊距離相等,∴這點在這個三角形三條角平分線上,即這點是三條角平分線的交點.故選:B.5.(4分)如圖,工人師傅設(shè)計了一種測零件內(nèi)徑AB的卡鉗,卡鉗交叉點O為AA'、BB'的中點,就可以知道該零件內(nèi)徑AB的長度.依據(jù)的數(shù)學(xué)基本事實是()A.兩邊及其夾角分別相等的兩個三角形全等 B.兩角及其夾邊分別相等的兩個三角形全等 C.兩條直線被一組平行線所截,所得的對應(yīng)線段成比例 D.兩點之間線段最短【解答】解:∵點O為AA'、BB'的中點,∴OA=OA',OB=OB',由對頂角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的長度,就可以知道該零件內(nèi)徑AB的長度,故選:A.6.(4分)閱讀以下作圖步驟:①在OA和OB上分別截取OC,OD,使OC=OD;②分別以C,D為圓心,以大于,兩弧在∠AOB內(nèi)交于點M;③作射線OM,連接CM,DM根據(jù)以上作圖,一定可以推得的結(jié)論是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DM C.∠1=∠2且OD=DM D.∠2=∠3且OD=DM【解答】解:A、以C,因此CM=DM,OM=OM,故A符合題意;B、因為OC,所以O(shè)C和CM不一定相等,故B不符合題意;C、因為OD,所以O(shè)D和DM不一定相等;D、CM的位置在變化,因此∠2不一定等于∠3.故選:A.7.(4分)已知a=1631,b=841,c=461,則a,b,c的大小關(guān)系是()A.a(chǎn)>b>c B.a(chǎn)>c>b C.a(chǎn)<b<c D.b>c>a【解答】解:a=1631=(24)31=2124;b=841=(23)41=2123;c=461=(22)61=2122;∵124>123>122,∴2124>2123>2122,即a>b>c.故選:A.8.(4分)觀察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定規(guī)律排列的一組數(shù):250、251、252、…、299、2100.若250=a,用含a的式子表示這組數(shù)的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【解答】解:∵2+26=23﹣6;2+25+23=44﹣2;5+22+33+25=23﹣4;?∴2+23+23+84+……+2n=5n+1﹣2,∴若650=a,250+251+352+?+299+2100=(7+22+33+……+2100)﹣(3+22+33+……+249)=(5101﹣2)﹣(250﹣4)=2101﹣2﹣750+2=2101﹣650=2×(250)4﹣250=2a5﹣a,故選:C.9.(4分)如圖,在△ABC中,AB=AC,將△ABM繞點A逆時針旋轉(zhuǎn)得到△ACN,點M的對應(yīng)點為點N,則下列結(jié)論一定正確的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC【解答】解:A、∵AB=AC,∴AB>AM,由旋轉(zhuǎn)的性質(zhì)可知,AN=AM,∴AB>AN,故本選項結(jié)論錯誤;B、當(dāng)△ABC為等邊三角形時,除此之外,故本選項結(jié)論錯誤;C、由旋轉(zhuǎn)的性質(zhì)可知,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本選項結(jié)論正確;D、只有當(dāng)點M為BC的中點時,才有MN⊥AC,不符合題意.故選:C.10.(4分)小梧要在一塊矩形場地上晾曬傳統(tǒng)工藝制作的蠟染布.如圖所示,該矩形場地北側(cè)安有間隔相等的7根柵欄,其中4根柵欄處與南側(cè)的兩角分別固定了高度相同的木桿a,b,c,d,e,繩子穿過木桿上的孔可以被固定.小梧想用繩子在南側(cè)的兩條木桿e,f和北側(cè)的一條木桿上連出一個三角形,那么他在北側(cè)木桿中應(yīng)優(yōu)先選擇()A.a(chǎn) B.b C.c D.d【解答】解:如圖,作E關(guān)于AG的對稱點E′,交AG于點C,則點C所在的木桿c應(yīng)該優(yōu)先選擇.故選:C.二、填空題(本大題有6小題,每小題4分,共24分)11.(4分)如圖,鋼架橋的設(shè)計中采用了三角形的結(jié)構(gòu),其數(shù)學(xué)道理是三角形具有穩(wěn)定性.【解答】解:這樣做的數(shù)學(xué)依據(jù)是三角形具有穩(wěn)定性,故答案為:三角形具有穩(wěn)定性.12.(4分)若y2﹣6y﹣k是完全平方式,則k的值等于﹣9.【解答】解:∵y2﹣6y+5=(y﹣3)2∴﹣k=5,∴k=﹣9.故答案為:﹣9.13.(4分)如圖,點F在正五邊形ABCDE的內(nèi)部,△ABF為等邊三角形126°.【解答】解:∵△ABF是等邊三角形,∴AF=BF,∠AFB=∠ABF=60°,在正五邊形ABCDE中,AB=BC=108°,∴BF=BC,∠FBC=∠ABC﹣∠ABF=48°,∴∠BFC=(180°﹣∠FBC)=66°,∴∠AFC=∠AFB+∠BFC=126°,故答案為:126°.14.(4分)如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點.已知線段AB是等腰三角形△ABC的一邊,△ABC的三個頂點都在正方形網(wǎng)格的格點上10.【解答】解:如圖:分三種情況:當(dāng)AB=AC時,以點A為圓心,交正方形網(wǎng)格的格點為C1,C2;當(dāng)BA=BC時,以點A為圓心,交正方形網(wǎng)格的格點為C3,C4;當(dāng)CA=CB時,作AB的垂直平分線5,C6;C7,C8,C5,C10;綜上所述:這樣的等腰三角形的個數(shù)為10,故答案為:10.15.(4分)已知:△ABC中,∠BAC=90°,AB=AC.如圖(0,4)、B(﹣2,0),則C點的坐標(biāo)為(4,2).【解答】解:如圖中,作CM⊥OA垂足為M,∵∠AOB=∠BAC=90°,∴∠BAO+∠CAM=90°,∠BAO+∠ABO=90°,∴∠ABO=∠CAM,在△ABO和△CAM中,,∴△ABO≌△CAM(AAS),∴MC=AO=4,AM=BO=2,∴點C坐標(biāo)(3,2).故答案為:(4,4).16.(4分)如圖,四邊形ABCD中,AB=AC,BE⊥AC于點F,交CD于點E,EA平分∠DEF.若BF=7,DE=34.【解答】解:∵∠D=90°,∴AD⊥DE,∵EA平分∠DEF,∵AF⊥EF,∴AF=AD;在Rt△ABF和△RtACD中,,∴Rt△ABF≌△RtACD(HL),∴BF=CD=7,∵DE=3,∴CE=CD﹣DE=7﹣3=4,故答案為:8.三、解答題(本大題有9小題,共86分)17.(8分)(1)m3?m?m6+(﹣m4)2+4(﹣m2)4;(2)用乘法公式簡便計算:96×104.【解答】解:(1)原式=m10+m8+4m8=m10+5m8.(2)原式=(100﹣2)(100+4)=1002﹣32=10000﹣16=9984.18.(8分)化簡求值:(2x+3y)2﹣(2x+3y)(2x﹣y),其中,y=﹣2.【解答】解:(2x+3y)3﹣(2x+3y)(6x﹣y)=4x2+12xy+6y2﹣(4x2﹣2xy+6xy﹣2y2)=4x7+12xy+9y2﹣5x2+2xy﹣6xy+3y2=8xy+12y2,當(dāng),y=﹣2時,原式=8×+12×5=4+48=52.19.(8分)已知:如圖,點D,E在△ABC的邊BC上,AD=AE.求證:BD=CE.【解答】證明:過點A作AF⊥BC,垂足為F,∵AB=AC,AF⊥BC,∴BF=CF,∵AD=AE,AF⊥DE,∴DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.20.(8分)如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(2,3)1B1C1并寫出頂點A1,B1,C1的坐標(biāo).【解答】解:(1)如圖,△A1B1C8為所作;由圖可知,A1(0,﹣4),B1(3,﹣8),C1(2,﹣6).21.(8分)4張長為a、寬為b(a>b)的長方形紙片,按如圖的方式拼成一個邊長為(a+b),圖中空白部分的面積為S1,陰影部分的面積為S2.(1)若a=3,b=1,則S1=11.(2)若S1=2S2,求a與b滿足關(guān)系:a2+4b2=4ab.【解答】解:(1)由題意得,S1=2×[ab+2=ab+ab+b2+a3﹣2ab+b2=a5+2b2,∴當(dāng)a=5,b=1時,S1=42+2×82==9+6=11,故答案為:11;(2)由(1)結(jié)果S1=a2+8b2,可得,a2+7b2=2[(a+b)4﹣(a2+2b6)],整理得,a2﹣4ab+5b2=0,即(a﹣5b)2=0,∴a=4b,故答案為:a=2b.22.(10分)觀察以下等式:第1個等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2個等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3個等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4個等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上規(guī)律,解決下列問題:(1)寫出第5個等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)寫出你猜想的第n個等式(用含n的式子表示),并證明.【解答】解:(1)因為第1個等式:(2×3+1)2=(8×2+1)7﹣(2×2)7,第2個等式:(2×5+1)2=(4×4+1)4﹣(3×4)5,第3個等式:(2×3+1)2=(3×6+1)8﹣(4×6)8,第4個等式:(2×5+1)2=(6×8+1)7﹣(5×8)5,第5個等式:(2×8+1)2=(8×10+1)2﹣(3×10)2,故答案為:(2×7+1)2=(4×10+1)2﹣(8×10)2;(2)第n個等式:(2n+5)2=[(n+1)×2n+1]2﹣[(n+4)×2n]2,證明:左邊=4n2+4n+5,右邊=[(n+1)×2n]8+2×(n+1)×5n+12﹣[(n+4)×2n]2=8n2+4n+6,∴左邊=右邊.∴等式成立.23.(10分)綜合與實踐:問題探究:(1)如圖1是古希臘數(shù)學(xué)家歐幾里得所著的《幾何原本》第1卷命題9“平分一個已知角,”即:作一個已知角的平分線,使得OC=OD,連接CD,則OE就是∠AOB的平分線.請寫出OE平分∠AOB的依據(jù):SSS;類比遷移:(2)小明根據(jù)以上信息研究發(fā)現(xiàn):△CDE不一定必須是等邊三角形,只需CE=DE即可;我國古代已經(jīng)用角尺平分任意角,做法如下:如圖3,OB上分別取OM=ON,移動角尺,N重合,則過角尺頂點C的射線OC是∠AOB的平分線;拓展實踐:(3)小明將研究應(yīng)用于實踐.如圖4,校園的兩條小路AB和AC,現(xiàn)在學(xué)校要在兩條小路之間安裝一盞路燈E,使得路燈照亮兩條小路(兩條小路一樣亮),試問路燈應(yīng)該安裝在哪個位置?請用不帶刻度的直尺和圓規(guī)在對應(yīng)的示意圖5中作出路燈E的位置.(保留作圖痕跡,不寫作法)【解答】解:(1)∵△CDE是等邊三角形,∴CE=DE,又∵OC=OD,OE=OE,∴△OCE≌△ODE(SSS),∴∠COE=∠DOE,∴OE是∠AOB的平分線,故答案為:SSS;(2)∵OM=ON,CM=CN,∴△OCM≌△OCN(SSS),∴∠AOC=∠BOC,∴射線OC是∠AOB的平分線;(3)如圖,點E即為所求的點.24.(12分)將一個三角形沿著其中一個頂點及其對邊上的一點所在的直線折疊,若折疊后原三角形的一邊垂直于這條對邊,則稱這條直線是該三角形的“對垂線”.(1)如圖1,AD是等邊△ABC的對垂線,把△ABC沿直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論