![河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view12/M02/0C/33/wKhkGWdJQ46AZGPBAAIuU65AyVo645.jpg)
![河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view12/M02/0C/33/wKhkGWdJQ46AZGPBAAIuU65AyVo6452.jpg)
![河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view12/M02/0C/33/wKhkGWdJQ46AZGPBAAIuU65AyVo6453.jpg)
![河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view12/M02/0C/33/wKhkGWdJQ46AZGPBAAIuU65AyVo6454.jpg)
![河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view12/M02/0C/33/wKhkGWdJQ46AZGPBAAIuU65AyVo6455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁河北農(nóng)業(yè)大學(xué)現(xiàn)代科技學(xué)院《統(tǒng)計學(xué)》
2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時,如果需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是2、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時,可能會遇到數(shù)據(jù)不一致的問題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項是最恰當(dāng)?shù)??()A.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)3、對于一個包含多個變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對應(yīng)分析D.典型相關(guān)分析4、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識的過程。假設(shè)一家電商企業(yè)想要通過數(shù)據(jù)挖掘來發(fā)現(xiàn)客戶的購買行為模式,以便進(jìn)行精準(zhǔn)營銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測分析5、在進(jìn)行數(shù)據(jù)可視化時,顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個圖表中區(qū)分不同的類別,以下哪個關(guān)于顏色選擇的原則是重要的?()A.對比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識度D.以上都是6、數(shù)據(jù)分析在市場營銷中有著廣泛的應(yīng)用。假設(shè)一家公司想要評估不同廣告渠道的效果。以下關(guān)于數(shù)據(jù)分析在市場營銷中的描述,哪一項是錯誤的?()A.可以通過A/B測試比較不同廣告版本的效果,確定最優(yōu)方案B.客戶細(xì)分能夠幫助企業(yè)針對不同客戶群體制定個性化的營銷策略C.僅僅依靠數(shù)據(jù)分析就能夠完全了解客戶的需求和行為,無需進(jìn)行市場調(diào)研D.數(shù)據(jù)分析可以監(jiān)測營銷活動的效果,及時調(diào)整策略,提高投資回報率7、在處理大量數(shù)據(jù)時,為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊列8、在數(shù)據(jù)分析中,如果想要比較兩個獨立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗方法?()A.t檢驗B.方差分析C.卡方檢驗D.秩和檢驗9、在數(shù)據(jù)分析的過程中,當(dāng)面對一個包含大量用戶消費行為數(shù)據(jù)的數(shù)據(jù)集,需要找出影響用戶購買決策的關(guān)鍵因素,例如產(chǎn)品價格、促銷活動、用戶評價等。假設(shè)數(shù)據(jù)的維度眾多,關(guān)系復(fù)雜,以下哪種數(shù)據(jù)分析方法可能最為有效?()A.描述性統(tǒng)計分析B.相關(guān)性分析C.因子分析D.回歸分析10、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動化工具和算法,也可以手動進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整11、在數(shù)據(jù)預(yù)處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進(jìn)行任何進(jìn)一步的分析B.異常值一定是錯誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對數(shù)據(jù)分析沒有任何影響,無需關(guān)注12、某數(shù)據(jù)分析項目需要對大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機D.詞袋模型13、對于一個包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機選擇算法D.以上算法效率差不多14、對于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟增長趨勢。數(shù)據(jù)涵蓋多個指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個地區(qū)每年的經(jīng)濟數(shù)據(jù)B.折線圖,呈現(xiàn)每個地區(qū)經(jīng)濟數(shù)據(jù)隨時間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟占比D.箱線圖,反映數(shù)據(jù)的分布情況15、在處理大數(shù)據(jù)時,分布式計算框架發(fā)揮了重要作用。以下關(guān)于分布式計算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲,不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計算方面性能更優(yōu)C.分布式計算框架可以解決數(shù)據(jù)的一致性問題,但無法提高計算效率D.分布式計算框架中的節(jié)點之間不需要進(jìn)行通信和協(xié)調(diào)16、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點進(jìn)行。假設(shè)我們要解決一個分類問題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項是不準(zhǔn)確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進(jìn)行試驗和比較B.可以通過調(diào)整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機搜索等方法進(jìn)行超參數(shù)調(diào)優(yōu)17、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對一個包含消費者購買行為的大型數(shù)據(jù)集,包括購買金額、購買頻率、購買商品類別等多個變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計算各個變量的均值、中位數(shù)和標(biāo)準(zhǔn)差等統(tǒng)計量B.進(jìn)行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點圖來觀察變量的分布和關(guān)系D.隨機抽取部分?jǐn)?shù)據(jù)進(jìn)行簡單觀察18、在數(shù)據(jù)分析的預(yù)測模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹集成模型,如隨機森林B.神經(jīng)網(wǎng)絡(luò),具有強大的擬合能力C.支持向量回歸,處理小樣本D.堅持使用簡單的線性模型19、數(shù)據(jù)分析中,經(jīng)常需要對數(shù)據(jù)進(jìn)行可視化展示。以下關(guān)于數(shù)據(jù)可視化的說法,不正確的是:()A.柱狀圖適合用于比較不同類別之間的數(shù)據(jù)差異B.折線圖常用于展示數(shù)據(jù)隨時間的變化趨勢C.餅圖能夠清晰地反映出各部分?jǐn)?shù)據(jù)占總體的比例關(guān)系D.箱線圖主要用于展示數(shù)據(jù)的分布范圍,對于數(shù)據(jù)的集中趨勢展示效果不佳20、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)我們有一個高維的數(shù)據(jù)集。以下關(guān)于主成分分析的描述,哪一項是不準(zhǔn)確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的主要信息B.通過計算協(xié)方差矩陣的特征值和特征向量來確定主成分C.主成分分析可以消除變量之間的相關(guān)性,使數(shù)據(jù)更易于分析D.主成分分析后的維度數(shù)量是固定的,不能根據(jù)需要進(jìn)行調(diào)整21、假設(shè)我們要分析一個網(wǎng)站的用戶行為數(shù)據(jù),以下哪種方法可以用于識別用戶的訪問模式?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.回歸分析22、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力23、在數(shù)據(jù)分析中的分類算法評估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個指標(biāo)即可,另一個可以忽略24、在數(shù)據(jù)分析項目中,數(shù)據(jù)隱私和安全是需要重點關(guān)注的問題。假設(shè)我們在處理包含個人敏感信息的數(shù)據(jù),以下哪種措施可以有效地保護(hù)數(shù)據(jù)隱私?()A.數(shù)據(jù)加密B.匿名化處理C.訪問控制D.以上都是25、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)銷售額的分布情況。以下關(guān)于數(shù)據(jù)可視化的描述,哪一項是不準(zhǔn)確的?()A.柱狀圖適合比較不同類別之間的數(shù)量差異B.折線圖常用于展示數(shù)據(jù)隨時間的變化趨勢C.餅圖能夠清晰地顯示各部分?jǐn)?shù)據(jù)占總體的比例關(guān)系,但不適合數(shù)據(jù)類別過多的情況D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來更美觀,對數(shù)據(jù)分析的幫助不大26、在進(jìn)行數(shù)據(jù)倉庫設(shè)計時,需要考慮數(shù)據(jù)的存儲和組織方式。假設(shè)要為一個大型企業(yè)構(gòu)建數(shù)據(jù)倉庫,以支持復(fù)雜的查詢和分析需求。以下哪種數(shù)據(jù)倉庫架構(gòu)在處理大規(guī)模企業(yè)數(shù)據(jù)時更具擴展性和性能優(yōu)勢?()A.星型架構(gòu)B.雪花架構(gòu)C.混合架構(gòu)D.以上架構(gòu)沒有區(qū)別27、在對一個城市的空氣質(zhì)量數(shù)據(jù)進(jìn)行分析,例如污染物濃度、氣象條件、季節(jié)因素等,以制定環(huán)境政策和改善空氣質(zhì)量。以下哪種分析方法可能有助于找出主要的污染源和影響因素?()A.方差分析B.因果分析C.判別分析D.以上都是28、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要考慮多個因素,其中數(shù)據(jù)模型是一個重要的因素。以下關(guān)于數(shù)據(jù)模型的描述中,錯誤的是?()A.數(shù)據(jù)模型是對數(shù)據(jù)的組織和存儲方式的抽象描述B.數(shù)據(jù)模型可以分為概念模型、邏輯模型和物理模型三個層次C.數(shù)據(jù)模型的設(shè)計應(yīng)該考慮數(shù)據(jù)的完整性、一致性和可擴展性D.數(shù)據(jù)模型的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無關(guān)29、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域非常廣泛。以下關(guān)于數(shù)據(jù)挖掘應(yīng)用領(lǐng)域的說法中,錯誤的是?()A.數(shù)據(jù)挖掘可以應(yīng)用于市場營銷、金融、醫(yī)療、電商等多個領(lǐng)域B.數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行客戶細(xì)分、風(fēng)險評估、產(chǎn)品推薦等工作C.數(shù)據(jù)挖掘的應(yīng)用需要結(jié)合具體的業(yè)務(wù)問題和數(shù)據(jù)特點,不能盲目使用D.數(shù)據(jù)挖掘只適用于大規(guī)模企業(yè),對于中小企業(yè)來說沒有實際應(yīng)用價值30、對于數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘,假設(shè)要從超市的銷售數(shù)據(jù)中發(fā)現(xiàn)商品之間的購買關(guān)聯(lián),例如哪些商品經(jīng)常一起被購買。以下哪種關(guān)聯(lián)規(guī)則挖掘算法可能會產(chǎn)生更有價值的結(jié)果?()A.Apriori算法,基于頻繁項集挖掘B.FP-Growth算法,提高挖掘效率C.Eclat算法,基于垂直數(shù)據(jù)格式D.不進(jìn)行關(guān)聯(lián)規(guī)則挖掘,依靠直覺判斷商品關(guān)聯(lián)二、論述題(本大題共5個小題,共25分)1、(本題5分)對于電商平臺的退換貨數(shù)據(jù),論述如何運用數(shù)據(jù)分析找出產(chǎn)品質(zhì)量和服務(wù)的問題,改進(jìn)供應(yīng)鏈管理和售后服務(wù)。2、(本題5分)在線教育平臺積累了大量的學(xué)生學(xué)習(xí)行為數(shù)據(jù),如何通過這些數(shù)據(jù)來改進(jìn)教學(xué)方法、優(yōu)化課程設(shè)計以及提升學(xué)生的學(xué)習(xí)效果?請詳細(xì)論述數(shù)據(jù)分析的流程、方法和可能遇到的挑戰(zhàn),并結(jié)合實際案例進(jìn)行分析。3、(本題5分)金融行業(yè)擁有豐富的交易數(shù)據(jù)和客戶信息。分析如何運用數(shù)據(jù)分析技術(shù),像風(fēng)險評估模型、投資組合優(yōu)化等,識別金融風(fēng)險、發(fā)現(xiàn)投資機會,提升金融機構(gòu)的風(fēng)險管理能力和盈利能力,同時探討在數(shù)據(jù)質(zhì)量、模型準(zhǔn)確性和監(jiān)管要求方面所面臨的挑戰(zhàn)及解決方案。4、(本題5分)探討在社交媒體監(jiān)測中,如何運用數(shù)據(jù)分析及時發(fā)現(xiàn)熱點話題和輿論趨勢,為企業(yè)和政府的決策提供參考。5、(本題5分)在線招聘平臺如何通過數(shù)據(jù)分析來提高人才匹配度、優(yōu)化招聘流程和評估招聘效果?請詳細(xì)闡述數(shù)據(jù)分析在招聘領(lǐng)域的應(yīng)用、挑戰(zhàn)和解決方案。三、簡答題(本大題共5個小題,共25分)1、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的版本控制和數(shù)據(jù)溯源,解釋其重要性和實現(xiàn)的方法,并舉例說明在實際項目中的應(yīng)用。2、(本題5分)在數(shù)據(jù)分析中,如何處理高維數(shù)據(jù)?請闡述常見的降維方法,如特征選擇、主成分分析等的原理和適用場景。3、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘,包括圖像分類、目標(biāo)檢測等,說明其技術(shù)和應(yīng)用場景。4、(本題5分)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級數(shù)學(xué)上冊 第二章 有理數(shù)2.2數(shù)軸 2在數(shù)軸上比較數(shù)的大小說課稿(新版)華東師大版
- 2023九年級數(shù)學(xué)下冊 第二十八章 銳角三角函數(shù)28.2 解直角三角形及其應(yīng)用28.2.2 應(yīng)用舉例第2課時 方向角和坡角問題說課稿 (新版)新人教版
- Module 7 Unit 2 There are twelve boys on the bike(說課稿)-2024-2025學(xué)年外研版(三起)英語 四年級上冊
- 16赤壁賦說課稿
- 4《說說我們的學(xué)校》(說課稿)- 2004-2025學(xué)年統(tǒng)編版道德與法治三年級上冊001
- 2025銷售居間合同勞動合同
- Unit4《Bobbys House》lesson6(說課稿)-2024-2025學(xué)年北師大版(三起)英語四年級上冊
- 10在牛肚子里旅行 說課稿-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
- 16新年的禮物 (說課稿)統(tǒng)編版道德與法治一年級上冊
- 2024年九年級語文上冊 第五單元 第9課《劉姥姥進(jìn)賈府》說課稿 北師大版
- 2024年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2025理論學(xué)習(xí)計劃2025年理論中心組學(xué)習(xí)計劃
- 山西省2024年中考物理試題(含答案)
- 非標(biāo)自動化設(shè)備技術(shù)規(guī)格書和驗收標(biāo)準(zhǔn)(模板)
- 領(lǐng)導(dǎo)干部個人有關(guān)事項報告表(模板)
- 危險化學(xué)品目錄2023
- GB/T 7631.18-2017潤滑劑、工業(yè)用油和有關(guān)產(chǎn)品(L類)的分類第18部分:Y組(其他應(yīng)用)
- GB/T 14258-2003信息技術(shù)自動識別與數(shù)據(jù)采集技術(shù)條碼符號印制質(zhì)量的檢驗
- 政府資金項目(榮譽)申報獎勵辦法
- 最新如何進(jìn)行隔代教育專業(yè)知識講座課件
- 當(dāng)前警察職務(wù)犯罪的特征、原因及防范,司法制度論文
評論
0/150
提交評論