版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
分段函數(shù)與函數(shù)的零點核心考點考情統(tǒng)計考向預(yù)測備考策略分段函數(shù)的性質(zhì)2023·北京卷T15可以預(yù)測2024年新高考命題方向?qū)⒗^續(xù)分段函數(shù)的綜合問題或函數(shù)的零點作為壓軸題展開命題.分段函數(shù)的綜合問題或函數(shù)的零點中填空題較難,縱觀近幾年的新高考試題,分別考查分段函數(shù)的性質(zhì)、函數(shù)的零點,同時備考也需強(qiáng)化函數(shù)的性質(zhì)和數(shù)形結(jié)合的應(yīng)用,也是高考沖刺復(fù)習(xí)的重點復(fù)習(xí)內(nèi)容。分段函數(shù)開放題2022·北京卷T14函數(shù)零點2021·北京卷T151.(2023·北京卷T15)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0,給出下列四個結(jié)論:①SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;②當(dāng)SKIPIF1<0時,SKIPIF1<0存在最大值;③設(shè)SKIPIF1<0,則SKIPIF1<0;④設(shè)SKIPIF1<0.若SKIPIF1<0存在最小值,則a的取值范圍是SKIPIF1<0.其中所有正確結(jié)論的序號是.【答案】②③【解析】依題意,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,易知其圖像為一條端點取不到值的單調(diào)遞增的射線;當(dāng)SKIPIF1<0時,SKIPIF1<0,易知其圖像是,圓心為SKIPIF1<0,半徑為SKIPIF1<0的圓在SKIPIF1<0軸上方的圖像(即半圓);當(dāng)SKIPIF1<0時,SKIPIF1<0,易知其圖像是一條端點取不到值的單調(diào)遞減的曲線;對于①,取SKIPIF1<0,則SKIPIF1<0的圖像如下,
顯然,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故①錯誤;對于②,當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0顯然取得最大值SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,綜上:SKIPIF1<0取得最大值SKIPIF1<0,故②正確;對于③,結(jié)合圖像,易知在SKIPIF1<0,SKIPIF1<0且接近于SKIPIF1<0處,SKIPIF1<0的距離最小,
當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0且接近于SKIPIF1<0處,SKIPIF1<0,此時,SKIPIF1<0,故③正確;對于④,取SKIPIF1<0,則SKIPIF1<0的圖像如下,
因為SKIPIF1<0,結(jié)合圖像可知,要使SKIPIF1<0取得最小值,則點SKIPIF1<0在SKIPIF1<0上,點SKIPIF1<0在SKIPIF1<0,同時SKIPIF1<0的最小值為點SKIPIF1<0到SKIPIF1<0的距離減去半圓的半徑SKIPIF1<0,此時,因為SKIPIF1<0的斜率為SKIPIF1<0,則SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上,滿足SKIPIF1<0取得最小值,即SKIPIF1<0也滿足SKIPIF1<0存在最小值,故SKIPIF1<0的取值范圍不僅僅是SKIPIF1<0,故④錯誤.2.(2022·北京卷T14)設(shè)函數(shù)SKIPIF1<0若SKIPIF1<0存在最小值,則a的一個取值為;a的最大值為.【答案】0(答案不唯一)1【解析】若SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0;若SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0沒有最小值,不符合題目要求;若SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,綜上可得SKIPIF1<0;3.(2021·北京卷T15)已知函數(shù)SKIPIF1<0,給出下列四個結(jié)論:①若SKIPIF1<0,SKIPIF1<0恰有2個零點;②存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有1個零點;③存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個零點;④存在正數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個零點.其中所有正確結(jié)論的序號是.【答案】①②④【解析】對于①,當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,①正確;對于②,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,存在SKIPIF1<0,使得SKIPIF1<0只有一個零點,②正確;對于③,當(dāng)直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0有兩個交點,若函數(shù)SKIPIF1<0有三個零點,則直線SKIPIF1<0與曲線SKIPIF1<0有兩個交點,直線SKIPIF1<0與曲線SKIPIF1<0有一個交點,所以,SKIPIF1<0,此不等式無解,因此,不存在SKIPIF1<0,使得函數(shù)SKIPIF1<0有三個零點,③錯誤;對于④,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有三個零點,④正確.1.分段函數(shù)(1)若函數(shù)在其定義域的不同子集上,因?qū)?yīng)關(guān)系不同而分別用幾個不同的式子來表示,這種函數(shù)稱為分段函數(shù).分段函數(shù)表示的是一個函數(shù).(2)分段函數(shù)的定義域等于各段函數(shù)的定義域的并集,其值域等于各段函數(shù)的值域的并集.2.根據(jù)分段函數(shù)解析式求函數(shù)值,首先確定自變量的值屬于哪個區(qū)間,其次選定相應(yīng)的解析式代入求解.3.已知函數(shù)值或函數(shù)的取值范圍求自變量的值或范圍時,應(yīng)根據(jù)每一段的解析式分別求解,但要注意檢驗所求自變量的值或范圍是否符合相應(yīng)段的自變量的取值范圍.4.判斷函數(shù)零點個數(shù)的方法:(1)利用零點存在定理判斷.(2)代數(shù)法:求方程f(x)=0的實數(shù)根.(3)幾何法:對于不易求根的方程,將它與函數(shù)y=f(x)的圖象聯(lián)系起來,利用函數(shù)的性質(zhì)找出零點或利用兩個函數(shù)圖象的交點求解.在利用函數(shù)性質(zhì)時,可用求導(dǎo)的方法判斷函數(shù)的單調(diào)性.5.利用函數(shù)零點的情況求參數(shù)值(或取值范圍)的三種方法1.已知函數(shù)SKIPIF1<0,若SKIPIF1<0存在最小值,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值為SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,由題意SKIPIF1<0存在最小值,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.故選:A2.定義運算SKIPIF1<0則函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由題:SKIPIF1<0,因為SKIPIF1<0都是以SKIPIF1<0為周期的函數(shù),所以SKIPIF1<0也是以SKIPIF1<0為周期的函數(shù),取SKIPIF1<0研究:SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故選:B.3.已知函數(shù)SKIPIF1<0,若存在非零實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】取SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,符合條件,排除選項A、C,取SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0,都不符合條件,若SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,不符合條件,若SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0,都不符合條件,綜上,SKIPIF1<0,排除B,選D故選:D4.若函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,因為函數(shù)SKIPIF1<0在R上的值域為SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的值域包含SKIPIF1<0,顯然SKIPIF1<0,否則當(dāng)SKIPIF1<0時,SKIPIF1<0,不符合題意,于是函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,其值域為SKIPIF1<0,因此SKIPIF1<0,則SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D5.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,則下列結(jié)論中一定正確的是(
)A.函數(shù)SKIPIF1<0一定存在最大值 B.函數(shù)SKIPIF1<0一定存在最小值C.函數(shù)SKIPIF1<0一定不存在最大值 D.函數(shù)SKIPIF1<0一定不存在最小值【答案】C【解析】由題意知函數(shù)SKIPIF1<0的值域為SKIPIF1<0,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,由于SKIPIF1<0,故當(dāng)SKIPIF1<0時,不論是函數(shù)SKIPIF1<0還是函數(shù)SKIPIF1<0,函數(shù)值SKIPIF1<0,因此函數(shù)SKIPIF1<0一定不存在最大值,A錯誤,C正確;若取SKIPIF1<0,則SKIPIF1<0,此時函數(shù)無最小值,B錯誤;若取SKIPIF1<0,則SKIPIF1<0,此時函數(shù)最小值為0,D錯誤;故選:C.6.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,且SKIPIF1<0.給出下列三個結(jié)論:①函數(shù)SKIPIF1<0是單調(diào)函數(shù);②當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱;③當(dāng)SKIPIF1<0時,方程SKIPIF1<0根的個數(shù)可能是1或2.其中所有正確結(jié)論的序號是(
)A.①② B.①③ C.②③ D.①②③【答案】D【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,且SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;則①正確;設(shè)SKIPIF1<0為SKIPIF1<0圖象上的任一點,不妨設(shè)SKIPIF1<0,因為SKIPIF1<0則SKIPIF1<0點SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的對稱點為SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,所以點SKIPIF1<0符合SKIPIF1<0所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱;故②正確;當(dāng)SKIPIF1<0時,令SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0化為SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以在點SKIPIF1<0處的切線的斜率為SKIPIF1<0當(dāng)SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0相切,方程SKIPIF1<0根的個數(shù)是1,當(dāng)SKIPIF1<0且SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0相交,方程SKIPIF1<0根的個數(shù)是2,則③正確.故選:D7.函數(shù)SKIPIF1<0,定義SKIPIF1<0,則SKIPIF1<0滿足(
)A.只有最小值,沒有最大值 B.既有最大值,又有最小值C.只有最大值,沒有最小值 D.既無最大值,也無最小值【答案】A【解析】在同一角直角坐標(biāo)系內(nèi)畫出函數(shù)SKIPIF1<0的圖象,如下圖所示:根據(jù)定義SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象如下圖所示:由圖象可知,該函數(shù)有最小值無最大值,故選:A8.已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】方程SKIPIF1<0有兩個不相等的實數(shù)根,即SKIPIF1<0有兩個不相等的實數(shù)根,又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0都是單調(diào)增函數(shù),故SKIPIF1<0也是單調(diào)增函數(shù);當(dāng)SKIPIF1<0時,SKIPIF1<0都是單調(diào)增函數(shù),故SKIPIF1<0也是單調(diào)增函數(shù);則SKIPIF1<0有兩個不相等的實數(shù)根,也即SKIPIF1<0的圖象有兩個不同的交點;在直角坐標(biāo)系中,作出SKIPIF1<0的圖象如下所示:數(shù)形結(jié)合可知,要滿足題意,則SKIPIF1<0,故選:B.9.已知函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0的方程SKIPIF1<0.有四個不同的實數(shù)解SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】作出函數(shù)SKIPIF1<0和直線SKIPIF1<0的圖形,如圖,由圖可知,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B10.關(guān)于函數(shù)SKIPIF1<0,給出下列結(jié)論:①SKIPIF1<0是偶函數(shù)且在在SKIPIF1<0上單調(diào)遞減;②方程SKIPIF1<0一定有實數(shù)解;③如果方程SKIPIF1<0(SKIPIF1<0為常數(shù))有解,則解的個數(shù)一定是偶數(shù).則正確結(jié)論的個數(shù)(
)A.3 B.2 C.1 D.0【答案】B【解析】對于①中,函數(shù)SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,即定義域關(guān)于原點對稱,且SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以①正確;對于②中,由函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由①知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0在第一象限一定有交點;由對稱性,可得當(dāng)SKIPIF1<0且SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0在第二象限一定有交點,所以方程SKIPIF1<0一定有實數(shù)解,所以②正確;對于③中,因為函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0與SKIPIF1<0軸只有一個交點,即SKIPIF1<0時,方程SKIPIF1<0只有一個解,所以③不正確.故選:B.11.已知函數(shù)SKIPIF1<0,給出下列四個結(jié)論:①若SKIPIF1<0,則函數(shù)SKIPIF1<0至少有一個零點;②存在實數(shù)SKIPIF1<0,SKIPIF1<0,使得函數(shù)SKIPIF1<0無零點;③若SKIPIF1<0,則不存在實數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0有三個零點;②對任意實數(shù)SKIPIF1<0,總存在實數(shù)SKIPIF1<0使得函數(shù)SKIPIF1<0有兩個零點.其中所有正確結(jié)論的個數(shù)是(
)A.4 B.3 C.2 D.1【答案】B【解析】①中,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,在同一坐標(biāo)系中作出SKIPIF1<0的圖象,如圖所示,由圖象及直線SKIPIF1<0過定點SKIPIF1<0,可得函數(shù)SKIPIF1<0至少一個零點,故①正確;
②中,當(dāng)SKIPIF1<0,SKIPIF1<0時,作出函數(shù)SKIPIF1<0的圖象,由圖象知,函數(shù)SKIPIF1<0沒有零點,所以②正確;
③中,當(dāng)SKIPIF1<0時,在同一坐標(biāo)系中,作出函數(shù)SKIPIF1<0的圖象,如圖所示,由圖象可得,此時函數(shù)SKIPIF1<0有3個零點,所以③錯誤;
④中,分別作出當(dāng)SKIPIF1<0時,函數(shù)的圖象,由圖象知,對于任意實數(shù)SKIPIF1<0,總存在實數(shù)SKIPIF1<0使得函數(shù)SKIPIF1<0有兩個零點,所以④正確.
所以①②④正確,故選B.12.關(guān)于函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,給出下列四個結(jié)論:甲:6是該函數(shù)的零點;乙:4是該函數(shù)的零點;丙:該函數(shù)的零點之積為0;?。悍匠蘏KIPIF1<0有兩個根.若上述四個結(jié)論中有且只有一個結(jié)論錯誤,則該錯誤結(jié)論是(
)A.甲 B.乙 C.丙 D.丁【答案】B【解析】當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0為增函數(shù),當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0為減函數(shù),故6和4只有一個是函數(shù)的零點,即甲乙中有一個結(jié)論錯誤,一個結(jié)論正確,而丙?丁均正確.由兩零點之積為0,則必有一個零點為0,則SKIPIF1<0,得SKIPIF1<0,若甲正確,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,方程SKIPIF1<0有兩個根,故丁正確.故甲正確,乙錯誤.若乙正確,甲錯誤,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),方程SKIPIF1<0只有一個根,則丁錯誤,不合題意,故選:B.13.設(shè)函數(shù)SKIPIF1<0①若SKIPIF1<0,則SKIPIF1<0的最小值為.②若SKIPIF1<0有最小值,則實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0SKIPIF1<0【解析】①當(dāng)SKIPIF1<0時,SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0;②由SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0有最小值,故當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值小于等于SKIPIF1<0,則當(dāng)SKIPIF1<0且SKIPIF1<0時,有SKIPIF1<0,符合要求;當(dāng)SKIPIF1<0時,SKIPIF1<0,故不符合要求,故舍去.綜上所述,SKIPIF1<0.14.已知函數(shù)SKIPIF1<0,(1)若SKIPIF1<0,則SKIPIF1<0的最大值是;(2)若SKIPIF1<0存在最大值,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0SKIPIF1<0【解析】(1)若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的最大值是SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,由(1)知,SKIPIF1<0存在最大值,當(dāng)SKIPIF1<0時,若SKIPIF1<0存在最大值,SKIPIF1<0在SKIPIF1<0應(yīng)單調(diào)遞減,所以SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,無最大值,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0存在最大值為SKIPIF1<0.故SKIPIF1<0的取值范圍為:SKIPIF1<0.15.函數(shù)SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的值為;若SKIPIF1<0有兩個零點,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0SKIPIF1<0【解析】若SKIPIF1<0,則SKIPIF1<0;因為SKIPIF1<0均至多有一個零點,所以SKIPIF1<0在SKIPIF1<0內(nèi)有一個零點,SKIPIF1<0在SKIPIF1<0內(nèi)有一個零點,且SKIPIF1<0的零點為SKIPIF1<0,SKIPIF1<0的零點為SKIPIF1<0,所以SKIPIF1<0,由指數(shù)函數(shù)單調(diào)性可知SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,16.設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0;②若函數(shù)SKIPIF1<0有兩個零點,則a的取值范圍是.【答案】2SKIPIF1<0【解析】①當(dāng)SKIPIF1<0時,SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.②因為函數(shù)SKIPIF1<0有兩個零點,所以SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的圖象有兩個交點.由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0得SKIPIF1<0.
結(jié)合圖象可得SKIPIF1<0,即SKIPIF1<0.所以a的取值范圍是SKIPIF1<0.17.已知函數(shù)SKIPIF1<0,那么SKIPIF1<0;當(dāng)方程SKIPIF1<0有且僅有3個不同的根時,實數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0SKIPIF1<0【解析】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;畫出函數(shù)SKIPIF1<0的圖象,方程SKIPIF1<0有且僅有3個不同的根即SKIPIF1<0與SKIPIF1<0的圖象有3個交點,由圖可得:SKIPIF1<0.18.已知函數(shù)SKIPIF1<0,關(guān)于x的方程SKIPIF1<0有3個不同的解,則m的取值范圍是.【答案】SKIPIF1<0【解析】由題意可知,方程SKIPIF1<0有3個不同的解轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0圖象的有SKIPIF1<0個不同交點.當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0取的極大值為SKIPIF1<0;作出SKIPIF1<0與SKIPIF1<0的大致圖象,如圖所示.由圖可知,要使函數(shù)SKIPIF1<0與SKIPIF1<0圖象的有SKIPIF1<0個不同交點,只需要SKIPIF1<0.所以m的取值范圍是SKIPIF1<0.19.已知函數(shù)SKIPIF1<0①當(dāng)SKIPIF1<0時,SKIPIF1<0的值域為;②若關(guān)于SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度跨境電商平臺區(qū)域代理合同范本3篇
- 2024年生物醫(yī)藥企業(yè)股權(quán)收購合同匯編3篇
- 淘寶找建筑課程設(shè)計
- 專題03 閱讀理解之推理判斷題(練習(xí))(解析版)
- 煉鋼廠部門崗位職責(zé)說明書
- 機(jī)電工程施工組織設(shè)計
- (一)高標(biāo)準(zhǔn)農(nóng)田施工方案
- 油條配方課程設(shè)計
- 糖果罐子手工課程設(shè)計
- 算法課程設(shè)計總結(jié)
- 無菌技術(shù)操作評分標(biāo)準(zhǔn)
- 《社群運營》全套教學(xué)課件
- 兒童版畫(版畫基礎(chǔ))
- 中央2024年國家國防科工局重大專項工程中心面向應(yīng)屆生招聘筆試歷年典型考題及考點附答案解析
- 車輛提檔委托書樣本
- 充值消費返利合同范本
- 宜賓市敘州區(qū)2022-2023學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題
- 國開政治學(xué)原理2024春期末綜合練習(xí)題(附答案)
- GB/T 18488-2024電動汽車用驅(qū)動電機(jī)系統(tǒng)
- 裝配式混凝土建筑預(yù)制疊合板、疊合梁識圖
- 醫(yī)療科研數(shù)據(jù)管理制度
評論
0/150
提交評論