版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ResearchReport
JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY
TheRootCausesofFailure
forArtificialIntelligence
ProjectsandHowThey
CanSucceed
AvoidingtheAnti-PatternsofAI
rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea
transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-
nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes
A
oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5
AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting
enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.
However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto
deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat
theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14
SUMMARY
2
Background
Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI
projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat
only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.
Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-
ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate
risksintheirplanning.
Approach
ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.
Takeaways
OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain
aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe
likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.
IndustryRecommendations
Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:
?Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand
miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.
?Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat
leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.
?Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.
3
?Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel
deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.
?UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.
AcademiaRecommendations
Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:
?Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween
academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.
?Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,
suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.
aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or
reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.
bCiscoAIReadinessIndex.
cKahn,“WantYourCompany’sAIProjecttoSucceed?”
Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow
toexecuteAIprojectsintheirorganizationavoid
someofthemostcommonreasonsforAIproject
failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From
theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes
andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.
AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-
ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork
togethertosolvepressingbusinessproblems.16
IT-typeprojectscanfailformanyreasonsnot
relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,
whichresultsinincreasedcostsforthesponsoring
enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18
Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.
4
Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences
withAI.20Forexample,McKinseyhasconducted
anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22
Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-
vidualsbuildingAIapplicationsasopposedtothe
businessleadersoftheorganization.Abottom-up
approachallowsustodiscusswhyAIprojectsfail
fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting
interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice
surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured
interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.
Methods
Togatherdataforthisreport,weconductedsemi-
structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese
interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-
nization.Weincludedbothtechnicalfailuresand
businessfailureswithinthisdefinition.Eachinter-
vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful
andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses
basedontheinterviewresponses.Theinterviews
wereconductedbetweenAugustandDecember2023.
Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-
endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese
professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees
werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed
towardidentifyingleadershipfailures.
IndustryParticipants
WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail
messages.Potentialparticipantshadatleastfive
yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual
contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected
participantstorepresentavarietyofexperiences
andbackgrounds.Inparticular,weselectedpar-
ticipantsfromdifferentcompanysizes(start-ups,
largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.
Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals
ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.
Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.
5
AcademiaParticipants
Weconducted15interviewsofacademicsdrawn
fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-
neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate
orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin
AppendixB.Ourinterviewswereconductedwith
thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.
FindingsfromIndustryInterviews
Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects
fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness
leadershipoftheorganizationmisunderstanding
howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.
Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand
utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.
Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-
turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject
TABLE1
IndustryCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
379
50
14
Percentage
100
13.2
3.7
TABLE2
AcademicCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
37
15
22
Percentage
100
40.5
59.5
failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.
Leadership-DrivenFailures
Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason
thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.
OptimizingfortheWrongBusinessProblem
First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This
resultsinthedatascienceteamworkinghardfor
monthstodeliveratrainedAImodelthatmakes
littleimpactonthebusinessororganization.In
manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.
Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan
6
beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade
bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but
whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat
sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome
obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.
UsingArtificialIntelligencetoSolveSimpleProblems
Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough
torequireanMLsolution:Asoneinterviewee
explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-
wordanddonotrealizethatsimplerandcheaper
solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident
thattheirbusinessareamusthavecomplexproblems
Manyleadersarenot
preparedforthetime
andcostofacquiring,cleaning,andexploringtheirorganization’sdata.
thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.
OverconfidenceinArtificialIntelligence
Additionally,manyseniorleadershaveinflated
expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-
mentsofAImodelshavegeneratedawaveofhype
aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse
casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many
businessleadersalsodonotrealizethatAIalgo-
rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.
UnderestimatingtheTimeCommitmentNeeded
Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount
oftimethatitwouldtaketotrainanAImodelthat
waseffectiveatsolvingtheirbusinessproblems.
Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They
expectAIprojectstotakeweeksinsteadofmonths
tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in
someorganizations,seniorleadersrapidlyswitch
theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal
7
results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,
“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27
Bottom-Up–DrivenFailures
Incontrasttothetop-downfailurepatternsdriven
bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure
patterndrivenbythedatascientistsontheteam.
Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto
tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild
uptheirexperienceusingthelatesttechnological
advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir
skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.
Data-DrivenFailures
Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.
Manyinterviewees(30of50)discussedpersistent
issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe
algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28
TooFewDataEngineers
Thelackofprestigeassociatedwithdataengineer-
ingactsasanadditionalbarrier:Oneinterviewee
referredtodataengineersas“theplumbersofdata
science.”29Dataengineersdothehardworkof
designingandmaintainingtheinfrastructurethat
ingests,cleans,andtransformsdataintoaformat
suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata
engineeringislookeddownonasamenialtask.30
Thegoalformanydataengineersistogrowtheir
skillsandtransitionintotheroleofdatascientist;
consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,
theseindividualstakealloftheirknowledgeabout
theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat
nooneknowswhichdatasetsarereliableorhowthe
meaningofadatasetmighthaveshiftedovertime.
PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill
loseinterestandabandonit.
LackofSuitableData
Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften
wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor
loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened
asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat
linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone
8
orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 皖西學(xué)院《大學(xué)美育實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 靈犀房屋租賃合同范例
- 府城租房合同范例
- 商務(wù)運營培訓(xùn)合同范例
- 山地帳篷租用合同范例
- 招標(biāo)項目采購合同范例
- 昌吉物業(yè)合同范例
- 煤礦供電合同范例
- 二手房電子合同范例
- 涂料配送服務(wù)合同范例
- 2023-2024學(xué)年深圳市福田區(qū)七年級上冊期末數(shù)學(xué)試卷
- 二年級數(shù)學(xué)應(yīng)用題50道附參考答案(綜合題)
- 光纜項目創(chuàng)業(yè)計劃書
- 昂立教育擬資產(chǎn)租賃所涉及的位于徐匯區(qū)龍耀路175號部分辦公房地產(chǎn)年租金市場價值資產(chǎn)評估報告
- 工業(yè)管道安裝工藝標(biāo)準(zhǔn)
- QBT 2667.1-2004 埋地通信用多孔一體塑料管材 第1部分硬聚氯乙烯(PVC-U)多 孔 一 體 管 材
- 宮頸機能不全和宮頸縫扎術(shù)課件
- 醫(yī)療設(shè)備的清潔和消毒制度
- 湖南省基本概況
- 通信原理智慧樹知到期末考試答案章節(jié)答案2024年濰坊學(xué)院
- 承包商安全資質(zhì)審核管理規(guī)定模板
評論
0/150
提交評論