廣西柳州市融水中學(xué)2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁
廣西柳州市融水中學(xué)2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁
廣西柳州市融水中學(xué)2025屆高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第3頁
廣西柳州市融水中學(xué)2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
廣西柳州市融水中學(xué)2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣西柳州市融水中學(xué)2025屆高三下學(xué)期一模考試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),滿足約束條件,則的最大值是()A. B. C. D.2.設(shè)集合,集合,則=()A. B. C. D.R3.已知函數(shù),若,則的值等于()A. B. C. D.4.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.5.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺6.函數(shù)的部分圖象大致是()A. B.C. D.7.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.8.設(shè)是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.9.已知,其中是虛數(shù)單位,則對應(yīng)的點的坐標(biāo)為()A. B. C. D.10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.11.使得的展開式中含有常數(shù)項的最小的n為()A. B. C. D.12.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,x5的系數(shù)是_________.(用數(shù)字填寫答案)14.集合,,若是平面上正八邊形的頂點所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;15.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.16.正方體的棱長為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當(dāng)弦的長度最大時,的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識.有關(guān)部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應(yīng)概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求X的分布列.附:,若,則,.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點、的極坐標(biāo)分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.20.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.21.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.22.(10分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

作出不等式對應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.2、D【解析】試題分析:由題,,,選D考點:集合的運算3、B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點睛】函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)4、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項

故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.5、A【解析】

根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.6、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當(dāng)時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負(fù),以及單調(diào)性,極值點等排除選項.7、D【解析】

根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預(yù)測的方法,屬于基礎(chǔ)題.8、C【解析】

根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎(chǔ)題.9、C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點的坐標(biāo)為,,.故選:.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.10、C【解析】

結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.11、B【解析】二項式展開式的通項公式為,若展開式中有常數(shù)項,則,解得,當(dāng)r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應(yīng)用.12、D【解析】

因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、-189【解析】由二項式定理得,令r=5得x5的系數(shù)是.14、②③【解析】

根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關(guān)鍵.15、或【解析】

依題意,當(dāng)時,由,即,解得;當(dāng)時,由,解得或(舍去).綜上,得或.16、【解析】

由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標(biāo)之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調(diào)查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設(shè)得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應(yīng)概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎(chǔ)題.18、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見解析【解析】

(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問題來處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對求導(dǎo)可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導(dǎo)可得,,,因為故,所以在上單調(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學(xué)生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.19、(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;

(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標(biāo)方程為曲線的直角坐標(biāo)方程為(2)在直角坐標(biāo)系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點,在極坐標(biāo)下,設(shè),分別代入中,有和∴,則,即20、(1)(2)證明見解析【解析】

(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時取等號,∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時取“”)【點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.21、(Ⅰ),(Ⅱ)見解析【解析】

(1)根據(jù)導(dǎo)數(shù)的運算法則,求出函數(shù)的導(dǎo)數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導(dǎo)數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號,這里應(yīng)注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當(dāng)時,,所以,即.【點睛】本題考查了利用導(dǎo)數(shù)求切線的斜率,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結(jié)合構(gòu)造函數(shù)實現(xiàn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論