版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
金昌市重點(diǎn)中學(xué)2025屆高考考前模擬數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.2.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.3.若復(fù)數(shù),則()A. B. C. D.204.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立5.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.6.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm37.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.8.已知為銳角,且,則等于()A. B. C. D.9.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)10.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,11.要排出高三某班一天中,語(yǔ)文、數(shù)學(xué)、英語(yǔ)各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.12.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R(shí),駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種二、填空題:本題共4小題,每小題5分,共20分。13.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____14.在的展開式中,各項(xiàng)系數(shù)之和為,則展開式中的常數(shù)項(xiàng)為__________________.15.如圖,在體積為V的圓柱中,以線段上的點(diǎn)O為項(xiàng)點(diǎn),上下底面為底面的兩個(gè)圓錐的體積分別為,,則的值是______.16.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過(guò)點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.連接.求證:存在實(shí)數(shù),使得成立.18.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.19.(12分)已知關(guān)于的不等式有解.(1)求實(shí)數(shù)的最大值;(2)若,,均為正實(shí)數(shù),且滿足.證明:.20.(12分)已知函數(shù),其中.(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對(duì)于恒成立,求的最大值.21.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.22.(10分)已知數(shù)列滿足:對(duì)任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項(xiàng)公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先由是偶函數(shù),得到關(guān)于直線對(duì)稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.2、D【解析】
設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.3、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.4、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.5、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點(diǎn)睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡(jiǎn)單題.6、B【解析】試題分析:該幾何體上面是長(zhǎng)方體,下面是四棱柱;長(zhǎng)方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點(diǎn):三視圖和幾何體的體積.7、B【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是難題.8、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對(duì)三角函數(shù)式化簡(jiǎn)求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.9、C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.11、C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午;②語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午,要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語(yǔ)文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語(yǔ)課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語(yǔ)文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語(yǔ)文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語(yǔ)課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.12、C【解析】
先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【點(diǎn)睛】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問(wèn)題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、80211【解析】
由,利用二項(xiàng)式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,屬于中檔題.14、【解析】
利用展開式各項(xiàng)系數(shù)之和求得的值,由此寫出展開式的通項(xiàng),令指數(shù)為零求得參數(shù)的值,代入通項(xiàng)計(jì)算即可得解.【詳解】的展開式各項(xiàng)系數(shù)和為,得,所以,的展開式通項(xiàng)為,令,得,因此,展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中常數(shù)項(xiàng)的計(jì)算,涉及二項(xiàng)展開式中各項(xiàng)系數(shù)和的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計(jì)算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.16、【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見解析【解析】
(1)由點(diǎn)可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達(dá)定理可得,再根據(jù)直線的斜率公式求得;由點(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因?yàn)?所以,又因?yàn)辄c(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,所以,即,則有,由點(diǎn)在橢圓上,得,所以,所以,即,所以存在實(shí)數(shù),使成立【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線的斜率公式的應(yīng)用,考查運(yùn)算能力.18、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡(jiǎn),由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)椋裕?,解得聯(lián)立,得,△=8>0設(shè),則【點(diǎn)睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時(shí)考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問(wèn)題.意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.19、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關(guān)于的不等式有解等價(jià)于,(ⅰ)當(dāng)時(shí),上述不等式轉(zhuǎn)化為,解得,(ⅱ)當(dāng)時(shí),上述不等式轉(zhuǎn)化為,解得,綜上所述,實(shí)數(shù)的取值范圍為,則實(shí)數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即,∴,所以,.【點(diǎn)睛】本題考查絕對(duì)值不等式中的能成立問(wèn)題以及綜合法證明不等式問(wèn)題,是一道中檔題.20、(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導(dǎo)可得,所以在上為增函數(shù),進(jìn)而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點(diǎn),所以函數(shù)在遞減,在,遞增,則,進(jìn)而可證;(Ⅲ)條件等價(jià)于對(duì)于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進(jìn)而求得最大值.【詳解】(Ⅰ)當(dāng)時(shí),,則,所以,又因?yàn)?,所以在上為增函?shù),因?yàn)?,所以?dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點(diǎn),設(shè)零點(diǎn)為,則,且,當(dāng)時(shí),,當(dāng),,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因?yàn)閷?duì)于恒成立,即對(duì)于恒成立,不妨令,因?yàn)?,,所以的解為,則當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當(dāng)時(shí),(a),(a)為增函數(shù),當(dāng)時(shí),(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問(wèn)題的解法,意在考查學(xué)生等價(jià)轉(zhuǎn)化思想和數(shù)學(xué)運(yùn)算能力,屬于較難題.21、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.22、(1)3;(2);(3)見解析.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人貸款申請(qǐng)調(diào)查流程
- 天津傳媒學(xué)院《信息安全與云計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川汽車職業(yè)技術(shù)學(xué)院《中國(guó)現(xiàn)代文學(xué)(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川工程職業(yè)技術(shù)學(xué)院《食品微生物學(xué)微生物的分離、純化》2023-2024學(xué)年第一學(xué)期期末試卷
- 深圳技術(shù)大學(xué)《電影導(dǎo)演大師作品賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東工藝美術(shù)學(xué)院《案例研究與開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 欽州幼兒師范高等??茖W(xué)?!犊缥幕浑H與禮儀》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度茶葉病蟲害防治合作協(xié)議電子版
- 2025年度二零二五年度車牌借用與車輛改裝服務(wù)合同
- 二零二五年度合同主體變更補(bǔ)充協(xié)議的執(zhí)行與變更監(jiān)督
- 臨床療效總評(píng)量表(CGI)
- 從教走向?qū)W:在課堂上落實(shí)核心素養(yǎng)
- 美世國(guó)際職位評(píng)估體系IPE3.0使用手冊(cè)
- 2020電網(wǎng)檢修工程預(yù)算定額第五冊(cè) 通信工程
- 圖像超分辨率增強(qiáng)技術(shù)
- 集裝箱貨運(yùn)碼頭的火災(zāi)防范措施
- DB15T+3199-2023公路工程水泥混凝土質(zhì)量聲波層析成像法檢測(cè)規(guī)程
- 高壓電纜試驗(yàn)報(bào)告
- 七年級(jí)數(shù)學(xué)上冊(cè)專題1.14數(shù)軸與絕對(duì)值綜合問(wèn)題大題專練(重難點(diǎn)培優(yōu))-【講練課堂】2022-2023學(xué)年七年級(jí)數(shù)學(xué)上冊(cè)尖子生同步培優(yōu)題典(原卷版)【人教版】
- 酸性氨基酸對(duì)caco
- 藝術(shù)導(dǎo)論P(yáng)PT完整全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論