版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省中央民族大附屬中學(xué)2025屆高考仿真卷數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.設(shè),,是非零向量.若,則()A. B. C. D.3.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.1204.過拋物線C:y2=4x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.5.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知表示兩條不同的直線,表示兩個(gè)不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.在平面直角坐標(biāo)系中,已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.8.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻)若從八卦中任取兩卦,這兩卦的六個(gè)爻中恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.10.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-3二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,其準(zhǔn)線與坐標(biāo)軸交于點(diǎn),過的直線與拋物線交于兩點(diǎn),若,則直線的斜率________.14.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點(diǎn).當(dāng)?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時(shí),面積為最小,政府投資最低?15.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.16.(5分)某膳食營(yíng)養(yǎng)科研機(jī)構(gòu)為研究牛蛙體內(nèi)的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對(duì)人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進(jìn)行抽樣試驗(yàn),則選出的只牛蛙中至少有只雄蛙的概率是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.18.(12分)網(wǎng)絡(luò)看病就是國(guó)內(nèi)或者國(guó)外的單個(gè)人、多個(gè)人或者單位通過國(guó)際互聯(lián)網(wǎng)或者其他局域網(wǎng)對(duì)自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實(shí)地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對(duì)網(wǎng)絡(luò)看病,實(shí)地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對(duì)網(wǎng)絡(luò)看病,實(shí)地看病兩種方式進(jìn)行滿意度測(cè)評(píng),根據(jù)患者的評(píng)分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對(duì)于網(wǎng)絡(luò)看病、實(shí)地看病那種方式的滿意度更高?并說(shuō)明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計(jì)網(wǎng)絡(luò)看病實(shí)地看病總計(jì)并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評(píng)價(jià)“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn).為橢圓的右焦點(diǎn),為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.21.(12分)如圖,在三棱柱中,,,,為的中點(diǎn),且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,.(1)求拋物線的方程;(2)當(dāng)以為直徑的圓與軸相切時(shí),求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.2、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問題往往有很好效果.3、C【解析】
可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.4、C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長(zhǎng)為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長(zhǎng)為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5、C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.6、B【解析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.7、C【解析】
利用誘導(dǎo)公式以及二倍角公式,將化簡(jiǎn)為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因?yàn)?,且,所?故選:C.【點(diǎn)睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.8、C【解析】
分類討論,僅有一個(gè)陽(yáng)爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個(gè)陽(yáng)爻的有巽、離、兌三卦中取一個(gè),再取沒有陽(yáng)爻的坤卦,計(jì)算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個(gè)陽(yáng)爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個(gè)陽(yáng)爻的有巽、離、兌三卦,沒有陽(yáng)爻的是坤卦,此時(shí)取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、B【解析】
根據(jù)程序框圖知當(dāng)時(shí),循環(huán)終止,此時(shí),即可得答案.【詳解】,.運(yùn)行第一次,,不成立,運(yùn)行第二次,,不成立,運(yùn)行第三次,,不成立,運(yùn)行第四次,,不成立,運(yùn)行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點(diǎn)睛】本題考查補(bǔ)充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意模擬程序一步一步執(zhí)行的求解策略.10、C【解析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.11、A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.12、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-2二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出拋物線焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線方程為,代入拋物線方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點(diǎn)睛】本題考查直線與拋物線相交,考查向量的線性運(yùn)算的坐標(biāo)表示.直線方程與拋物線方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線與拋物線相交問題的常用方法.14、(1);(2).【解析】
(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡(jiǎn)整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對(duì)原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因?yàn)橹本€與圓相切,所以.因?yàn)辄c(diǎn)在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時(shí),取得最大值,取最小值.答:當(dāng)時(shí),面積為最小,政府投資最低.【點(diǎn)睛】本題考查三角函數(shù)的實(shí)際應(yīng)用,應(yīng)優(yōu)先結(jié)合實(shí)際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.15、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.【點(diǎn)睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.16、【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進(jìn)行抽樣試驗(yàn),其基本事件為,共15個(gè),選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個(gè),故選出的只牛蛙中至少有只雄蛙的概率是.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1),;(2)米.【解析】
(1)過點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點(diǎn)作于點(diǎn)則,在中,,,由正弦定理得:,,,,,因?yàn)?化簡(jiǎn)得,令,,且,因?yàn)?故令即,記,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,又,當(dāng)時(shí),取最大值,此時(shí),的最大值為米.【點(diǎn)睛】本題主要考查了三角函數(shù)在實(shí)際中的應(yīng)用,需要根據(jù)題意建立角度與長(zhǎng)度間的關(guān)系,進(jìn)而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對(duì)應(yīng)的最值即可.屬于難題.18、(1)實(shí)地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對(duì)實(shí)地看病滿意度更高,可以從莖葉圖四個(gè)方面選一個(gè)回答即可;(2)先完成列聯(lián)表,再由獨(dú)立性檢驗(yàn)得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對(duì)實(shí)地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評(píng)分低于80分;在實(shí)地看病中,有的患者評(píng)分高于80分,因此患者對(duì)實(shí)地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡(luò)看病滿意度評(píng)分的中位數(shù)為73分,實(shí)地看病評(píng)分的中位數(shù)為87分,因此患者對(duì)實(shí)地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評(píng)分平均分低于80分;實(shí)地看病的滿意度的評(píng)分平均分高于80分,因此患者對(duì)實(shí)地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評(píng)分在莖6上的最多,關(guān)于莖7大致呈對(duì)稱分布;實(shí)地看病的評(píng)分分布在莖8,上的最多,關(guān)于莖8大致呈對(duì)稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認(rèn)為實(shí)地看病評(píng)分比網(wǎng)絡(luò)看病打分更高,因此實(shí)地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡(luò)看病滿意度調(diào)查的15名患者中共有5名對(duì)網(wǎng)絡(luò)看病滿意,10名對(duì)網(wǎng)絡(luò)看病不滿意;參加實(shí)地看病滿意度調(diào)查的15名患者中共有10名對(duì)實(shí)地看病滿意,5名對(duì)實(shí)地看病不滿意.故完成列聯(lián)表如下:滿意不滿意總計(jì)網(wǎng)絡(luò)看病51015實(shí)地看病10515總計(jì)151530于是,所以有的把握認(rèn)為患者看病滿意度與看病方式有關(guān).(3)網(wǎng)絡(luò)看病的評(píng)價(jià)的分?jǐn)?shù)依次為82,85,85,88,92,由小到大分別記為,從網(wǎng)絡(luò)看病的評(píng)價(jià)“滿意”的人中隨機(jī)抽取2人,所有可能情況有:;;;共10種,其中,這2人評(píng)分都低于90分的情況有:;;共6種,故由古典概型公式得這2人評(píng)分都低于90分的概率.【點(diǎn)睛】本題主要考查莖葉圖的應(yīng)用和獨(dú)立性檢驗(yàn),考查古典概型的概率的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.19、(1);(2)①;②詳見解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因?yàn)?,所以,且,解?(2)①因?yàn)?,所以,兩式相減,得,即.因?yàn)?,所以,?而當(dāng)時(shí),,可得,故,所以對(duì)任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.②因?yàn)椋?,兩式相減,得,即,所以對(duì)任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),,所以,即,所以,得證.【點(diǎn)睛】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.20、(1)(2)(3)【解析】試題分析:(1);(2)由橢圓對(duì)稱性,知,所以,此時(shí)直線方程為,故.(3)設(shè),則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設(shè)橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對(duì)稱性,知,所以,此時(shí)直線方程為,由,得,解得(舍去),故.(3)設(shè),則,直線的方程為,代入橢圓方程,得,因?yàn)槭窃摲匠痰囊粋€(gè)解,所以點(diǎn)的橫坐標(biāo),又在直線上,所以,同理,點(diǎn)坐標(biāo)為,,所以,即存在,使
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年混凝土管樁購(gòu)銷協(xié)議版B版
- 滬科版九年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考點(diǎn) 第24章 圓知識(shí)歸納與題型突破(17類題型清單)
- 2024-2030年中國(guó)塑料中空成型機(jī)市場(chǎng)供需形勢(shì)分析及未來(lái)發(fā)展策略研究報(bào)告
- 2024年版土地中介合同(精練)3篇
- 2024全新股東合作協(xié)議書下載:企業(yè)戰(zhàn)略聯(lián)盟與共同投資協(xié)議3篇
- 2024年三輪車維修保養(yǎng)及配件供應(yīng)協(xié)議3篇
- 2024年樁基施工項(xiàng)目合作合同書版B版
- 2025年昆明貨運(yùn)資格證試題答案解析
- 2024年特定借款權(quán)讓渡合同版B版
- 2025年陜西貨運(yùn)從業(yè)資格證考題500道
- LNG加氣站運(yùn)營(yíng)與維護(hù)方案
- 人教版數(shù)學(xué)六上第四單元《比》全單元教學(xué)設(shè)計(jì)
- 2024年下半年教師資格考試高中思想政治學(xué)科知識(shí)與教學(xué)能力測(cè)試試卷及答案解析
- LY/T 3371-2024草原生態(tài)狀況評(píng)價(jià)技術(shù)規(guī)范
- 2024年中華全國(guó)律師協(xié)會(huì)招聘5人歷年(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 供貨能力方案
- 四川2024年四川省公安廳招聘警務(wù)輔助人員186人筆試歷年典型考題及考點(diǎn)附答案解析
- 艾滋病性病的健康教育與行為干預(yù)
- 2023年12月遼寧大連甘井子區(qū)招考聘用社區(qū)工作者50人 筆試歷年典型考題及考點(diǎn)剖析附答案詳解
- 2024事業(yè)單位聘用合同書封面
- 數(shù)據(jù)通信與計(jì)算機(jī)網(wǎng)絡(luò)智慧樹知到期末考試答案章節(jié)答案2024年四川鐵道職業(yè)學(xué)院
評(píng)論
0/150
提交評(píng)論