南京師范大學中北學院《智能計算與最優(yōu)化》2023-2024學年第一學期期末試卷_第1頁
南京師范大學中北學院《智能計算與最優(yōu)化》2023-2024學年第一學期期末試卷_第2頁
南京師范大學中北學院《智能計算與最優(yōu)化》2023-2024學年第一學期期末試卷_第3頁
南京師范大學中北學院《智能計算與最優(yōu)化》2023-2024學年第一學期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁南京師范大學中北學院

《智能計算與最優(yōu)化》2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、知識圖譜是人工智能中用于表示知識和關(guān)系的一種技術(shù)。假設(shè)一個智能問答系統(tǒng)基于知識圖譜來回答用戶的問題。以下關(guān)于知識圖譜的描述,哪一項是錯誤的?()A.知識圖譜將實體、關(guān)系和屬性以圖的形式組織起來,便于知識的表示和查詢B.可以通過從大量文本中自動抽取信息來構(gòu)建知識圖譜C.知識圖譜中的知識是固定不變的,一旦構(gòu)建完成就無需更新D.結(jié)合自然語言處理技術(shù),能夠?qū)崿F(xiàn)基于知識圖譜的智能問答和推理2、在人工智能的文本摘要生成中,假設(shè)需要從長篇文章中提取關(guān)鍵信息并生成簡潔準確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點?()A.基于注意力機制的模型,關(guān)注重要的文本部分B.按照文章的開頭和結(jié)尾提取關(guān)鍵語句C.隨機選擇文章中的段落作為摘要D.不進行任何分析,直接輸出原文的前幾段3、在人工智能的聚類分析中,例如將客戶按照消費行為進行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進行分組D.隨機聚類算法,隨機分配數(shù)據(jù)到不同組4、在人工智能的圖像識別模型中,假設(shè)需要提高模型對不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強方法可能有效?()A.隨機改變圖像的亮度和對比度B.對圖像進行裁剪和縮放C.旋轉(zhuǎn)圖像一定角度D.以上都是5、深度學習模型在圖像識別任務(wù)中取得了顯著的成果。假設(shè)要訓練一個深度卷積神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物,以下關(guān)于模型訓練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識別準確率,層數(shù)越多越好B.訓練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計C.模型在訓練集上的準確率很高,但在測試集上的準確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學習模型不需要進行調(diào)參和優(yōu)化,直接使用默認參數(shù)就能得到較好的結(jié)果6、在人工智能的倫理和社會影響方面,存在許多值得關(guān)注的問題。假設(shè)人工智能系統(tǒng)在招聘過程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說法,哪一項是需要謹慎考慮的?()A.可以完全避免人為的偏見和不公平B.可能會因為數(shù)據(jù)偏差導(dǎo)致某些群體受到不公平對待C.其決策結(jié)果應(yīng)該無條件被接受和執(zhí)行D.不需要對其進行監(jiān)管和評估7、當利用人工智能進行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是8、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大的潛力。以下關(guān)于人工智能在農(nóng)業(yè)應(yīng)用的描述,不正確的是()A.可以通過圖像識別技術(shù)監(jiān)測農(nóng)作物的生長狀況和病蟲害B.能夠根據(jù)氣象數(shù)據(jù)和土壤條件進行精準的灌溉和施肥決策C.人工智能在農(nóng)業(yè)中的應(yīng)用受限于農(nóng)村地區(qū)的基礎(chǔ)設(shè)施和技術(shù)水平,發(fā)展緩慢D.借助智能傳感器和物聯(lián)網(wǎng)技術(shù),實現(xiàn)農(nóng)業(yè)生產(chǎn)的智能化管理9、強化學習是人工智能的一個重要分支,常用于訓練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個智能體正在通過強化學習算法學習玩一款復(fù)雜的游戲,以下關(guān)于強化學習過程的描述,正確的是:()A.智能體在學習過程中只需要隨機嘗試不同的動作,就能快速找到最優(yōu)策略B.獎勵函數(shù)的設(shè)計對智能體的學習效果沒有顯著影響,只要有獎勵就行C.智能體能夠通過與環(huán)境的不斷交互和試錯,逐漸優(yōu)化自己的策略以獲得更高的累計獎勵D.強化學習不需要考慮環(huán)境的動態(tài)變化和不確定性,只關(guān)注當前的動作和獎勵10、可解釋性是人工智能模型面臨的一個重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強信任B.一些復(fù)雜的深度學習模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級的差異11、在人工智能的推薦系統(tǒng)中,為用戶提供個性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項是不準確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機推薦D.混合推薦12、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機制的優(yōu)化算法??紤]一個優(yōu)化問題,需要在一個復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項是不正確的?()A.遺傳算法通過模擬生物進化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機的,沒有任何規(guī)律可循13、在人工智能的語音識別任務(wù)中,噪聲環(huán)境會對識別準確率產(chǎn)生顯著影響。假設(shè)要提高在嘈雜環(huán)境下的語音識別性能,以下哪種方法可能最有效?()A.增加訓練數(shù)據(jù)中的噪聲樣本B.使用更復(fù)雜的聲學模型C.優(yōu)化語音信號的預(yù)處理D.提高麥克風的質(zhì)量14、深度學習在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓練一個深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物。如果訓練數(shù)據(jù)中某些動物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓練速度加快D.模型的準確率提高15、人工智能在金融領(lǐng)域的風險管理中具有潛在應(yīng)用價值。假設(shè)一家銀行要利用人工智能評估客戶的信用風險,以下關(guān)于其應(yīng)用的描述,哪一項是不準確的?()A.可以分析客戶的交易記錄、財務(wù)狀況等多維度數(shù)據(jù),進行信用評估B.深度學習模型能夠自動提取數(shù)據(jù)中的隱藏特征,提高信用評估的準確性C.人工智能評估的信用結(jié)果可以完全取代傳統(tǒng)的信用評估方法,無需人工審核D.為了保證評估的公正性和可靠性,需要對人工智能模型進行定期監(jiān)測和驗證16、在人工智能的模型評估中,假設(shè)已經(jīng)有了訓練集、驗證集和測試集。以下關(guān)于使用這些數(shù)據(jù)集的方法,哪一項是不正確的?()A.在訓練集上訓練模型,在驗證集上調(diào)整超參數(shù),在測試集上評估最終模型的性能B.將訓練集、驗證集和測試集混合在一起進行訓練,以增加數(shù)據(jù)量C.只在訓練集上訓練模型,然后直接在測試集上評估性能D.多次使用測試集來評估模型,以確保結(jié)果的可靠性17、深度學習在近年來取得了顯著的成果,特別是在圖像識別和語音識別等領(lǐng)域。以下關(guān)于深度學習的敘述,不準確的是()A.深度學習是一種基于多層神經(jīng)網(wǎng)絡(luò)的機器學習方法,能夠自動從數(shù)據(jù)中學習特征B.深度學習模型需要大量的訓練數(shù)據(jù)和強大的計算資源來進行訓練C.深度學習可以解決傳統(tǒng)機器學習方法難以處理的復(fù)雜問題,如語義理解和情感分析D.深度學習模型的結(jié)構(gòu)和參數(shù)一旦確定,就無法根據(jù)新的數(shù)據(jù)進行調(diào)整和優(yōu)化18、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強大的學習能力。假設(shè)我們正在訓練一個多層神經(jīng)網(wǎng)絡(luò)來預(yù)測股票價格的走勢。如果網(wǎng)絡(luò)的訓練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強B.網(wǎng)絡(luò)的訓練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預(yù)測不準確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜19、在人工智能的發(fā)展過程中,倫理原則的制定至關(guān)重要。假設(shè)要制定人工智能倫理原則,以下關(guān)于其制定的描述,哪一項是不正確的?()A.應(yīng)考慮公平、公正、透明、可解釋等原則,保障公眾利益B.倫理原則應(yīng)隨著技術(shù)的發(fā)展和應(yīng)用不斷更新和完善C.制定倫理原則只需考慮技術(shù)層面的問題,無需考慮社會和文化因素D.廣泛征求各界意見,確保倫理原則的合理性和可行性20、在人工智能的自動駕駛感知任務(wù)中,假設(shè)需要同時處理來自多個傳感器(如攝像頭、激光雷達、毫米波雷達)的數(shù)據(jù)。以下哪種融合方式能夠更有效地綜合利用多源信息?()A.早期融合,在特征層面進行融合B.中期融合,在決策層面進行融合C.晚期融合,在結(jié)果層面進行融合D.隨機選擇一種傳感器的數(shù)據(jù)作為主要依據(jù)二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述人工智能在智能培訓效果評估中的應(yīng)用。2、(本題5分)解釋人工智能在社會可持續(xù)發(fā)展指標體系建立中的方法。3、(本題5分)簡述人工智能在市場調(diào)研和趨勢分析中的作用。4、(本題5分)解釋人工智能在生物科學中的研究方向。5、(本題5分)說明游戲開發(fā)中的人工智能技術(shù)。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)剖析某智能稅務(wù)申報輔助系統(tǒng)中人工智能的功能,如稅務(wù)計算和風險提示。2、(本題5分)研究一個利用人工智能進行傳統(tǒng)民間藝術(shù)表演形式創(chuàng)新的案例,分析其創(chuàng)新點和觀眾接受度。3、(本題5分)研究一個使用人工智能的智能戲曲作品傳播效果監(jiān)測系統(tǒng),分析其如何監(jiān)測戲曲作品的傳播效果。4、(本題5分)以某智能民間藝術(shù)作品收藏管理系統(tǒng)為例,探討人工智能在作品評估和保管建議方面的作用。5、(本題5分)考察某智能城市垃圾處理系統(tǒng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論