廣東省興寧市水口中學2025屆高考仿真模擬數學試卷含解析_第1頁
廣東省興寧市水口中學2025屆高考仿真模擬數學試卷含解析_第2頁
廣東省興寧市水口中學2025屆高考仿真模擬數學試卷含解析_第3頁
廣東省興寧市水口中學2025屆高考仿真模擬數學試卷含解析_第4頁
廣東省興寧市水口中學2025屆高考仿真模擬數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省興寧市水口中學2025屆高考仿真模擬數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}2.已知函數,且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.3.若函數在時取得極值,則()A. B. C. D.4.若復數滿足(為虛數單位),則其共軛復數的虛部為()A. B. C. D.5.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.6.已知函數,若關于的方程有且只有一個實數根,則實數的取值范圍是()A. B.C. D.7.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.8.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則9.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線10.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-3211.函數在上的大致圖象是()A. B.C. D.12.已知集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知以x±2y=0為漸近線的雙曲線經過點,則該雙曲線的標準方程為________.14.已知向量,,,則_________.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.16.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數列中,,,分別是下表第一、二、三行中的某一個數,且其中的任何兩個數不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數,使得,,成等比數列,若有,請求出的值;若沒有,請說明理由.18.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統(tǒng)計數據如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.19.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.20.(12分)為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.22.(10分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.2、C【解析】

根據題意,得,,則為減函數,從而得出函數的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數為減函數,函數在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數的單調性比較大小,還考查化簡能力和轉化思想.3、D【解析】

對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于??碱}型.4、D【解析】

由已知等式求出z,再由共軛復數的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數=-1+,虛部為1故選D.【點睛】本題考查復數代數形式的乘除運算和共軛復數的基本概念,屬于基礎題.5、D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.6、B【解析】

利用換元法設,則等價為有且只有一個實數根,分三種情況進行討論,結合函數的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數有無數個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數方程根的個數的應用.利用換元法,數形結合是解決本題的關鍵.7、C【解析】

取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.8、C【解析】

根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.9、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.10、A【解析】

利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.11、D【解析】

討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.12、D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數函數的單調性,以及并集的運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據漸近線求雙曲線,設雙曲線方程為是解題的關鍵.14、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質,向量的模的計算.15、【解析】

利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.16、【解析】

由中位線定理和正方體性質得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關鍵是根據定義作出異面直線所成的角.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,或;(2)存在,.【解析】

(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設存在正整數,使得,,成等比數列,即,解方程是否存在正整數解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數列,,,所以其通項公式為.②,,,此時等差數列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數列,則,即,整理,得,即,此方程無正整數解,故不存在正整數,使,,成等比數列.若選則②,,則,若,,成等比數列,則,即,整理得,因為為正整數,所以.故存在正整數,使,,成等比數列.【點睛】本題考查等差數列的通項公式及前n項和,涉及到等比數列的性質,是一道中檔題.18、(Ⅰ),該公司年年利潤的預測值為億元;(Ⅱ).【解析】

(Ⅰ)求出和的值,將表格中的數據代入最小二乘法公式,求得和的值,進而可求得關于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數,然后利用組合計數原理結合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據表中數據,計算可得,,,又,,,關于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點睛】本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數原理的應用,考查計算能力,屬于中等題.19、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉化為角的關系,建立函數關系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.20、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關(3)詳見解析【解析】

(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯(lián)表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關.(3)由(2)可知,獲獎的概率為,的可能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論