揭開(kāi)人工智能在交通網(wǎng)絡(luò)安全中的神秘面紗(英文)_第1頁(yè)
揭開(kāi)人工智能在交通網(wǎng)絡(luò)安全中的神秘面紗(英文)_第2頁(yè)
揭開(kāi)人工智能在交通網(wǎng)絡(luò)安全中的神秘面紗(英文)_第3頁(yè)
揭開(kāi)人工智能在交通網(wǎng)絡(luò)安全中的神秘面紗(英文)_第4頁(yè)
揭開(kāi)人工智能在交通網(wǎng)絡(luò)安全中的神秘面紗(英文)_第5頁(yè)
已閱讀5頁(yè),還剩123頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DEMYSTIFYINGARTIFICIALINTELLIGENCEINTRANSPORTATIONCYBERSECURITY

URBANJONSON,SVPITANDCYBERSECURITYSERVICES,SERJON

Copyright?SERJON,LLC2024.Allrightsreserved.

URBANJONSON

ujonson@

Current

SVPInformationTechnologyandCybersecurityServices,SERJON,LLC

USFBIInfraGardTransportationSubjectMatterExpert

FBIAutomotiveSectorSpecificWorkingGroup(SSWG)

BoardofDirectors,CyberTruckChallenge

ProgramCommittee,ESCARUSA

SAEVehicleElectricalSystemSecurityCommitteeMember

Technology&MaintenanceCouncil(TMC)S.5andS.12StudyGroupMember

Experience

Over35yearsofexperienceinITandCybersecurity,includingstrategicplanning,assessments,projectmanagement,andprogrammanagement

Variouspapers,talks,andresearchonhacking,aswellasdefendingtrucksandtransportationingeneral

Abusinganddefendingsystemssincethe1980s

Copyright?SERJON,LLC2024.Allrightsreserved.

AGENDA

?AIOverview

?AITaxonomy

?ChallengeswithAI

?CommonAImistakes

?TransportationApplications

?AttackingAI

?DefendingAI

?Wrap-up

ImagegeneratedbyBingImageCreator

Copyright?SERJON,LLC2024.Allrightsreserved.

AIOVERVIEW

Copyright?SERJON,LLC2024.Allrightsreserved.

HISTORICALOVERVIEW

?1950s–BirthofAI

?AlanTuringandotherslaidthegroundworkformachineintelligence

?1960s–EarlyApplications

?Problem-solvingandsymbolicreasoning,e.g.playingchess

?1980s–ExpertSystems

?Programsdesignedtomimichumanexpertise,e.g.taxsoftware

?1990s–MachineLearningResurgence

?NeuralnetworksandnewalgorithmsrevitalizeinterestinAI

Copyright?SERJON,LLC2024.Allrightsreserved.

HISTORICALOVERVIEW

?2000s–RiseofBigData

?Availabilityoflargedatasetsandimprovedcomputingpower

?2010s–DeepLearningDominance

?Multi-layeredneuralnetworkscapableofimagerecognition,speechrecognition

?2020s–GenerativeAI

?NewLargeLanguageModels(LLM)builtonmassivedatacloudplatformscapableofgeneratingimages,code,andother

content(ChatGPT,BingImageCreator,etc.)basedoninputprompts

Copyright?SERJON,LLC2024.Allrightsreserved.

TECHNICALOVERVIEW

UNDERSTANDABLEVSPREDICTIVEPOWER

Image:NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachinelearning

[.uk/collection/machine-learning]

Copyright?SERJON,LLC2024.Allrightsreserved.

MACHINELEARNINGAPPLICATIONS

Commonmachine

learninganalytic

applications

Image:

/science/article/pii/S0951832021003835

Copyright?SERJON,LLC2024.Allrightsreserved.

ARTIFICIALNEURALNETS

Thecorecomponent

ofneuralnetsisthe

artificialneuron

Conceptuallycanbethoughtofasamini

linearregressionmodel

Image:

/blog/artificial-neural-networks-basics-guide/

Copyright?SERJON,LLC2024.Allrightsreserved.

TRAININGMETHODS

Image:

/science/article/pii/S0951832021003835

Copyright?SERJON,LLC2024.Allrightsreserved.

MODELTRAINING

Simplesupervisedlearning

Imagesareconvertedintonumericaldatausuallybyflatteningintoavector

Image:

/@MITIBMLab/estimating-information-flow-in-deep-neural-networks-b2a77bdda7a7

Copyright?SERJON,LLC2024.Allrightsreserved.

AITAXONOMY

Copyright?SERJON,LLC2024.Allrightsreserved.

OVERVIEW

NISTAIUseTaxonomy*:

?Decomposescomplexhuman-AItasksintoactivitiesthatareindependentoftechnologicaltechniques(e.g.,neural

network,largelanguagemodel,reinforcementlearning)anddomains(e.g.,finance,medicine,law).

?ProvidesaflexiblemeansofclassifyinganAIsystem’scontributiontoaspecifiedhuman-AItask.

?Intendedtobealivingdocumentthatisupdatedperiodicallywithfeedbackfromstakeholders,suchasthoseintheAI

evaluationandhumanfactorscommunities.

*NISTTrustworthyandResponsibleAINISTAI200-1,AIUseTaxonomy:AHuman-CenteredApproach,byTheofanos,Choong,andJenson,March2024,

/10.6028/NIST.AI.200-1

.

Copyright?SERJON,LLC2024.Allrightsreserved.

AITAXONOMY-TRANSPORTATION

?Connectionist–Learningalgorithmsbasedonneuralnetworks

?Bayesians–Probability-basedinferencesystems

?Symbolists–Logic-basedalgorithmssuchasrules-based

programming,decisiontrees,fuzzylogic,andrationalagents

?Analogizers–Similarity-basedclassifiers,suchassupportvectormachines

?Optimizations–Algorithmsperformingiterativeupdatesand

comparisonstodiscoveroptimumsolutions,e.g.GeneticAlgorithm(GA)

JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,JesúsCerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,GeorgeNikolakopoulos,andJoseLuisFlores.

2024.ArtificialIntelligenceforSafety-CriticalSystemsinIndustrialandTransportationDomains:ASurvey.ACMComput.Surv.56,7,Article176(July2024),40pages.

/10.1145/3626314

Copyright?SERJON,LLC2024.Allrightsreserved.

CHALLENGESWITHAI

Copyright?SERJON,LLC2024.Allrightsreserved.

NON-DETERMINISTIC

?Thesameinputswillnotalwaysgeneratethesameoutputs

?Randomdataselectionbasedonprobabilitycurves

?Anytimeyouaddrandomdataselectioninconnectionistmodels,youruntheriskofnon-deterministicoutcomes

?Ifyourmodelcontinuestolearn,forexamplelinearregression,theoutputswillvaryovertimeasmodellearns

?Expertsystemsgenerallydonotsufferfromthisproblem,butanything

thathasaneuralnetworkwillruntherisk

Copyright?SERJON,LLC2024.Allrightsreserved.

INSCRUTABLE

?ThemathandcodeforAIiscompletelyunderstandable…..and“human-ish”readable

?Thedatathatyouusetotrainthemodelis

understandable(hopefully,ifyouhavedoneyourjobright)

?Theproblemiswhenyouusethecodetogenerateamodelbasedonthedata

?Duetohowthemodellearns(developingacomplexwebofprobabilisticweights)andisexpressed,itisnot

possibletolookatthemodelandunderstandhowitworks

Copyright?SERJON,LLC2024.Allrightsreserved.

UNEXPLAINABLE

?Sincethemodelisnon-deterministicandinscrutable,itisnoteasilyunderstood

?Makesexplaining“why”amodelproducedtheexactoutputexceedinglydifficultfor

neuralnetworks

?ExplainableandTrustworthyAIisanareaofintenseresearch

?TrustworthyAIcangenerateatrusted

explanationthathumanscanunderstand

Copyright?SERJON,LLC2024.Allrightsreserved.

WHYTHEPROBLEM?

?Layeredneuralnetworks

?Randomlygeneratedvalues

?Probabilisticevaluations

?Deeplearningisstatisticswithlinearalgebra

Image:

/tutorial/introduction-to-deep-neural-networks

Copyright?SERJON,LLC2024.Allrightsreserved.

DATAPROBLEM

?Ourmodelsareonlyasgoodasourdata

?Transportationdatasetsareintheirinfancy

?Wearestillinthegreat“dataownership”battle

?Ourvehicleplatformslackthesensorstocollectthenecessaryinformation(possible

exception…Tesla)

?Modelsareverylimitedinwhattheycando

Copyright?SERJON,LLC2024.Allrightsreserved.

TRANSPORTATIONDATASAMPLES

?Lackofinstrumentation

?Teslaprobablyhasbestdataset

?VehicleISasensorplatform

?Designedtocollectalldata

?Driversprovidingexperience

?Robottaxifleetdata2ndplace

?Cruise

?Waymo

?ProprietaryDataSources

?OEMdata

?Telematicsdata

?Vehicle/Fleetoperatordata

?OpenData

?PIVOT(

/

)

?EUDataAct

?ColoradoStateUniversity

Copyright?SERJON,LLC2024.Allrightsreserved.

TRAININGDATAPROBLEM

?DeeplearningandLLMsrequiremassivedatasetsforlearningandvalidation

?LLMs,suchasChatGPT,haveusedagreatdealofinternetcontent

?Manyimages,text,books,etc.usedinlearningmodelsarecopyrightedmaterials

?IsgeneratinganAImodelbasedonsomeoneelse’swork

a“fairuse”ofcopyrights?

?WhatiftheresultingAIismonetized?

?Howdoyouremoveonepartorsegmentoftrainingdataonceamodelhasbeencreated?

Copyright?SERJON,LLC2024.Allrightsreserved.

EDGECASES

?Edgecasesarestatisticaloutliereventsthatarenotpartofthetrainingdata

?Thoughtheymayberare,theycan

resultinunexpectedandundesirableoutcomes

?Edgecasesarewheretragedylives

Copyright?SERJON,LLC2024.Allrightsreserved.

Source:Projectguru.in

UBER

?UberAutonomousCrashMarch2018

?Pedestrianwalkingbicycleacrosstheroad

?Vehicleidentifiesandtrackspedestrian

?Vehicledoesnotbreak

?Safetydriverwasdistractedanddidnotact

?Factoryauto-breakingsystemdisabledsoasnottointerferewith

automateddrivingsoftware

?Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices

Copyright?SERJON,LLC2024.Allrightsreserved.

CRUISE

?CruiseaccidentOctober2023

?Pedestriancrossesroadagainstdonotwalksignal

?Pedestriangetshalfwayacrossbeforecrosstrafficforcespedestriantowalkback

?Pedestrianhitbyacarandthrownintothepathofcruisevehicle

Copyright?SERJON,LLC2024.Allrightsreserved.

CRUISE

?Cruisevehicleisacceleratingeventhoughit“sees”pedestrian

?Vehicledoesnotrecognizescenario(edgecase)

?PedestriangetstrappedundertheCruisevehicle

?Vehiclesystemrecognizessomethingiswrong

?Insteadofstopping,thevehicledrivesforwardandpullsover,draggingthepedestrianunderthecar

?Whynotstop?

?Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices

Copyright?SERJON,LLC2024.Allrightsreserved.

COMMONAIMISTAKES

Copyright?SERJON,LLC2024.Allrightsreserved.

LACKOFUNDERSTANDINGMODELS

?Mathishard,andlibrariesareeasy

?ThereareTONSofdifferentAImodelsandapproaches

?

TensorFlowiseasyandrequiresalmostnothinking

?

?

AnacondaextendsaccesstoeveryonewhocanPythonAmodelorimplementationinsearchofaproblem

?

Sometimes,neuralnetworksarenotthebestsolution

?

OftenseeproblemssolvedwithMLthatshouldbesolvedbyexpertsystems

?

Lackofunderstandingoflimitations

?

DisconnectbetweenAIandfunctionalsafety

Copyright?SERJON,LLC2024.Allrightsreserved.

DATASCIENCEDISCIPLINE

?Traditionalprogrammingisbasedonrequirements

?AIisbasedonDATA,whichmakesdatasciencecritical

?“Garbagein,garbageout”x1000

?Acommonerroristhatdatasciencelifecyclenotfollowed

?Smalldatasetsforlearningandvalidationareproblematic

?Lackofproperlysizeddatasetsleadto:

?Overfitmodelschasingaccuracy

?Falseminimaandmaximaforoptimizationproblems

?Higherprobabilityeventsarenotincludedinthemodel

?Significantmisclassificationscomparedtoreal-worlddata

Copyright?SERJON,LLC2024.Allrightsreserved.

Experimentationandprediction

DATASCIENCELIFECYCLE

preparation

Data

Explorationandvisualization

?Datacollectionandstorage

?Defineprojectobjectives

?Collectdata

?Normalizestorageandformat

?Explorationandvisualization

?Statisticaldataanalysis

?Datalabeling

?Datapreparation

?Missingorinconsistentdata

?Cleaningandaugmentingdata

?Removingduplicates

?Normalization

?Datalabeling

?Datatypeconversation

?Graphsandchartsforunderstanding

?Experimentationandprediction

?Trydifferentmodelsandapproaches

?Identifydatatrendsandpatterns

?Discoverinsights

?Buildmodel

Data

collection/storage

Source:

/blog/what-is-data-science-the-definitive-guide

Copyright?SERJON,LLC2024.Allrightsreserved.

TRANSPORTATIONAPPLICATIONS

Copyright?SERJON,LLC2024.Allrightsreserved.

ASSISTINGDRIVERS

?Safety-related“assistant”applicationstoreduceimpairedordistracteddriving

?Lane-keepingassist

?Intelligentcruisecontrol

?Automaticemergencybraking

?Limitcellphoneusewhiledriving(cellphone“drivingmode”)

?Limitcellphonedistractionsviapredictivebehaviororvehicleintegration

?Bettermusicplaylistprediction

?Bettermapsanddirections

?Recognizeimpaireddriving

?Inallthesescenarios,thedriverisstillthemaincontrollingactor

Copyright?SERJON,LLC2024.Allrightsreserved.

ANOMALY/ERRORDETECTION

?Vehiclepredictivemaintenance

?Batterylife

?Tirewear

?Many,manymore…..

?MotorfreightcarriersandTSPs

?Analyzebatteryvoltages

?Exhaustsensors

?Noiseandvibrationsensors

?CANbusmessages

?IntermittentDTCs

Copyright?SERJON,LLC2024.Allrightsreserved.

ANOMALY/ERRORDETECTION

?Vehiclecybersecurity[atscale]

?VSOC

?Faultpatterns

?Geolocationtrends

?IndividualvehicleIDSstillproblematic

?Lackoftrainingandvalidationdata

?Rule-basedexpertsystemsareprobablymoreeffective

?CompanionroleforML(seefunctionalsafety“safetybag”examples)

Copyright?SERJON,LLC2024.Allrightsreserved.

GENERALTRANSPORTATION

?TherearemanyapplicationsofAIinTransportationManagementSystems(TMS)andTrafficManagementSystems(TMS)

?Freightmovementoptimization

?Fuelconservation

?Mostefficientroutecalculations

?Trafficmanagement

?Parkingefficiencyandoptimization

Copyright?SERJON,LLC2024.Allrightsreserved.

FUNCTIONAL-SAFETY

?Functionalsafetyiswell-knownpracticewithspecificrulesandknownapproachestoachievingsafety

?Mitigationtechniquestodealwithuncertainty

?Safetybag(thinkinput/outputparametervalidation)

?Safetymonitors

?Diagnostics

?Formalmethods

?Functionalsafetysystemslikecrashavoidanceandlanedepartureassistthatcontainclassifiermodelsarenotprimarysafetysystems

?Driverremainstheprimarysafetysystemincontrolofthevehicle

Copyright?SERJON,LLC2024.Allrightsreserved.

FUNCTIONAL-SAFETY

?Neuralnetwork-basedAIisapoorchoiceforfunctionalsafetysystems

?Testingmassivelycomplexnon-deterministicsystemsisalmostimpossible

?Caveat:FormalmethodscombinedwithML

?Impossibletoexplainwhyamodelbehavesinacertainway

?Introducessafetyrisksandmassivelegalliabilities

Copyright?SERJON,LLC2024.Allrightsreserved.

AUTONOMOUSVEHICLES

?ExistingMLmodelsareunsuitableforSAELevel3–5automation

?Wedonothavethedatatousethemeffectively

?CurrentMLmodelsarenotexplainableortrustworthy

?MoreadvancedMLmodelsarenon-deterministic

?MLissuitableforclassifiersandpreceptorsbutnotatthe

accuracyrequiredforfunctionalsafety

?Closedandcontrolledenvironmentsarepossible

?Real-worldpublicroadsandadversarialenvironmentsaretoocomplexwheresafetystandardscannotbemet

Image:createdbymonkik

Copyright?SERJON,LLC2024.Allrightsreserved.

ATTACKINGAI

Copyright?SERJON,LLC2024.Allrightsreserved.

ATTACKINGAI

?Traditionaltechniquesarestillapplicable

?Denialofserviceattacks

?Softwarestackvulnerabilitiesandexploits

?Hostingandruntimeenvironmentexploitation

?Socialengineering

?TherearenewattackmethodstargetingAI

?MITREAdversarialThreatLandscapeforAI

?OWASPTop10MachineLearningRisks

Copyright?SERJON,LLC2024.Allrightsreserved.

Systems(ATLAS?)

CLASSIFICATIONINPUTMANIPULATION

?Modificationofaninput(e.g.image,sensorvalue)tocause:

?Misclassification

?Triggererrorconditions

?Alterintendedbehavior(inference-basedsystems)

?Acommonexampleisstopsign“modification”:

?Addingtapetocausemisclassification

?Shiningbrightlightsalteringgradientanalysis

?Alargenumberofacademicpapersonhowtomessuptrafficsignalinputs

?FewMLmodelsareimmune

?Distinctfrompromptmanipulation(coveredlater)

Copyright?SERJON,LLC2024.Allrightsreserved.

EXPLOITEDGECASES

?Limitationsofavailabledataallowedgecaseexploitation

?Analyzethemodelanddeterminelow-probabilityinputs

?UseanAItofuzzanotherAImodeltodeterminelimitations

?Causethemodeltobehaveincorrectlyorevencrash

?Especiallyeffectiveifinputandoutputvaluesarenotvalidatedandboundschecked

?Maycausesystemfailureorsoftwarestackmalfunction

?Errorconditionscancauseremotecodeexecutionordataexfiltrationopportunities

Copyright?SERJON,LLC2024.Allrightsreserved.

PROMPTINJECTION/MANIPULATION

?ApplicabletoLLMmodelswhichgenerateoutputbasedonprompts

?OnewaytothinkofthisisasSQLInjectionattacks,butinsteadoftargetingaSQLDB,theunderlyingmodelistargeted

?Injection/promptattackscancause:

?Datadisclosure

?Modelcorruption

?Hostingsystemcorruption

?Bypasssafetyorcontentrestrictions

?Wecanalsousesocialengineeringtrickstogetthemodeltodothingsitisnotsupposedtodo(hardastrickinga4yrold)

Copyright?SERJON,LLC2024.Allrightsreserved.

TRAININGDATAPOISONING

?AImodelsarebuiltfromthetrainingdata

?Duetolackoftrainingdata,manytrainingsetsarebasedonpublicdatasources

?Poisoningapublicdatasetcanintroduce

?Backdoors

?Remotecodeexecutionerrors

?Anynumberofmalwarescenarios

?Feedingmaliciousdataintoacontinuouslearningmodelcancausemodeldriftandeventualmodelfailure

?ContinuouslylearningIDSsystems

?Self-optimizingmodels

Copyright?SERJON,LLC2024.Allrightsreserved.

HACKING

EXAMPLE

Copyright?SERJON,LLC2024.Allrightsreserved.

HACKINGADASMODEL

?BlackhatAsia2024-TheKeytoRemoteVehicleControl:AutonomousDrivingDomainController

?ShupengGao,SeniorSecurityResearcher,Baidu

?YingtaoZeng,SeniorSecurityResearcher,Baidu

?JieGao,SeniorSecurityResearcher,Baidu

?YimiHu,SeniorSecurityResearcher,Baidu

?Analyzedover30ADASdevices

?50%hadSHHenabled

?Somedeployedwithoriginalmodelfiles(*.onnx)

?Littleornodiskencryption

/asia-24/briefings/schedule/index.html#the-key-to-remote-vehicle-control-autonomous-driving-domain-contr

oller-38089

Copyright?SERJON,LLC2024.Allrightsreserved.

HACKINGADASMODEL

?ADASunitcanbeapathwaytototalvehiclecompromiseasitneedstobeaccessibleonCANnetworkandupdateable

?Researchers:

?Abletooffloadentiremodelfiles,includingoriginalmodelfiles

?Abletoreadthemodelanddeployina$50toycar

?Possibletoupdatemodelonoriginaldevice

?PoorlysecuredADASmodulecanleadtototalvehiclecontrol

?Steering

?Braking

?Powertrain

Copyright?SERJON,LLC2024.Allrightsreserved.

DEFENDINGAI

Copyright?SERJON,LLC2024.Allrightsreserved.

AI-WHATISTHESAME?

Themorethingschange,themoretheyremainthesame:

?Softwarestackvulnerabilities

?Operatingsystemvulnerabilities

?Softwaresupplychainattacks

?Hardwarefirmware

?PlatformOS

?Browservulnerabilities

?ITandDevSecOpsbestpracticesstillapply

?Sanitizeandvalidateinputsandoutputs

Copyright?SERJON,LLC2024.Allrightsreserved.

AI-WHAT’SDIFFERENT?

?Systemsarebuiltgroundupfromdata,notrequirements

?Awholenewmindsetforadversarialattackvectors

?Increasedsupplychaincomplexity

?Inputvalidationbecomesharderandmoreimportant

?Datahandlingproceduresaremoreimportant

?Erroneous,mislabeled,orincompletedatacanhavebigimpact

?DevSecOpsneedstoincorporatedataandmachinelearningmodels

?Datascientistsneedtounderstandcybersecurity

Copyright?SERJON,LLC2024.Allrightsreserved.

AI–DEFENSIVEBESTPRACTICES

Whilenotanexhaustivelist,herearesomebestpractices:

?ProtectsystemboundariesbetweenITandAI

?Identifyandprotectallproprietarydata

?StrongaccessandauthorizationcontrolsforfinalAImodelweights

?Hardenthedeploymentenvironment

?Applyversionlabelstomodels(changestoweights)

?Validateallinputsforedgecasesandattacks

?Validatealloutputstoensureoperationinsideboundaries(safetybag)

Copyright?SERJON,LLC2024.Allrightsreserved.

DEFENSIVERESOURCES

ThereareseveralrecentgoodpublicationsoncybersecuritybestpracticesfordeployingmachinelearningandAIingeneral:

?NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachine

learning

.uk/collection/machine-learning

?NationalCyberSecurityCentre(UK)–GuidelinesforsecureAIsystem

development

.uk/collection/guidelines-secure-ai-system-development

?JointCybersecurityInformation-DeployingAISystemsSecurely

/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-

SYSTEMS-SECURELY.PDF

Copyright?SERJON,LLC2024.Allrightsreserved.

WRAP-UP

Copyright?SERJON,LLC2024.Allrightsreserved.

AIFUTURE

?Improvementsincustomerservice

?Improvementsinoperationalefficiency

?Developingbetterdesigns

?Assistingindevelopmentofnewmaterials

?Inspectingandevaluatinginfrastructure

?Improvingsafetythroughnewdriverassistancefeatures

?Increasefleetuptime

……ExplainableandtrustworthyAIwillbringmoreapplications

Copyright?SERJON,LLC2024.Allrightsreserved.

FURTHERREADING

IfyouarenewtoAI/ML,Icanhighlyrecommendthefollowingbookasagoodstartingpoint

?Ozdemir,S.,Kakade,S.,&Tibaldeschi,M.(2018).PrincipalsofDataScience(2nded.).PacktPublishing.

/product/principles-of-data

-science-second-edition/9781789804546

Ifyouarelookingforamorein-depthfoundationalbook,Iwouldrecommendthefollowingbook:

?Kelleher,J.D.,MacNamee,B.,&D’Arcy,A.(2015).FundamentalsofMachineLearningforPredictiveDataAnalytics.TheMITPress.

Copyright?SERJON,LLC2024.Allrightsreserved.

FURTHERREADING

Forthosewhowanttogettotheheartofthemathandbuildyourownmodels,includingdeepregressionlearning,Iwouldrecommendthefollowingbook:

?Goodfellow,I.,Bengio,Y.,&Courville,A.(2017).DeepLearning.TheMITPress.Iwouldalsorecommendthefollowingpaperformoreinformationaboutsafety-criticalAIapplicationsintransportationtohelptietogethertheuseofAIintransportation:

?JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,Jesús

Cerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,George

Nikolakopoulos,andJoseLuisFlores.2024.ArtificialIntelligenceforSafety-CriticalSystemsin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論