山東科技大學(xué)《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
山東科技大學(xué)《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
山東科技大學(xué)《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
山東科技大學(xué)《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
山東科技大學(xué)《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共5頁山東科技大學(xué)

《計(jì)算智能導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的圖像識(shí)別模型中,假設(shè)需要提高模型對(duì)不同光照條件下圖像的魯棒性。以下哪種數(shù)據(jù)增強(qiáng)方法可能有效?()A.隨機(jī)改變圖像的亮度和對(duì)比度B.對(duì)圖像進(jìn)行裁剪和縮放C.旋轉(zhuǎn)圖像一定角度D.以上都是2、當(dāng)利用人工智能進(jìn)行欺詐檢測,例如在金融交易中識(shí)別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是3、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越受到關(guān)注。假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生診斷肺部疾病的系統(tǒng),以下關(guān)于模型的可解釋性和透明度的要求,哪一項(xiàng)是最為重要的?()A.能夠準(zhǔn)確診斷疾病即可,不需要解釋診斷的依據(jù)B.以可視化的方式展示模型對(duì)肺部影像的分析過程和決策依據(jù)C.提供一個(gè)簡單的診斷結(jié)果,不解釋模型是如何得出這個(gè)結(jié)果的D.隱藏模型的內(nèi)部工作原理,以防止被競爭對(duì)手模仿4、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實(shí)現(xiàn)農(nóng)作物的病蟲害監(jiān)測,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時(shí)發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,獨(dú)立完成病蟲害的防治工作C.由于農(nóng)作物生長環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測設(shè)備越多,人工智能病蟲害監(jiān)測系統(tǒng)的準(zhǔn)確性就越高5、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能6、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦7、在人工智能的自然語言處理領(lǐng)域中,當(dāng)需要開發(fā)一個(gè)能夠準(zhǔn)確理解和生成人類語言的智能系統(tǒng),以用于智能客服回答各種復(fù)雜的問題時(shí),以下哪種技術(shù)或方法通常是關(guān)鍵的基礎(chǔ)?()A.詞法分析B.句法分析C.語義理解D.語用分析8、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個(gè)關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個(gè)用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺,隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動(dòng)超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動(dòng)尋找最優(yōu)超參數(shù)9、人工智能中的智能監(jiān)控系統(tǒng)可以對(duì)視頻內(nèi)容進(jìn)行分析。假設(shè)要在一個(gè)公共場所的監(jiān)控系統(tǒng)中檢測異常行為,以下哪個(gè)因素對(duì)于檢測的準(zhǔn)確性至關(guān)重要?()A.監(jiān)控?cái)z像頭的分辨率B.視頻數(shù)據(jù)的存儲(chǔ)方式C.算法對(duì)異常行為的定義和建模D.網(wǎng)絡(luò)帶寬10、在人工智能的倫理原則中,“公平性”是一個(gè)重要的考量因素。假設(shè)一個(gè)人工智能招聘系統(tǒng)對(duì)不同性別、種族的候選人給出了不同的評(píng)價(jià)結(jié)果。以下關(guān)于解決這種公平性問題的方法,哪一項(xiàng)是不正確的?()A.對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,消除可能導(dǎo)致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評(píng)估指標(biāo),對(duì)模型進(jìn)行監(jiān)測和改進(jìn)11、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是12、在人工智能的知識(shí)表示方法中,語義網(wǎng)絡(luò)和框架表示是常見的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類的知識(shí)系統(tǒng),以下關(guān)于這兩種表示方法的說法,哪一項(xiàng)是正確的?()A.語義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識(shí)B.框架表示難以處理知識(shí)的不確定性和模糊性C.語義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對(duì)象及其關(guān)系D.框架表示在知識(shí)的擴(kuò)展和更新方面較為困難13、在人工智能的藝術(shù)創(chuàng)作評(píng)價(jià)中,例如評(píng)價(jià)一幅由人工智能生成的繪畫作品,以下哪種標(biāo)準(zhǔn)和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨(dú)特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達(dá)和審美價(jià)值D.以上都是14、人工智能中的模型壓縮技術(shù)對(duì)于在資源受限的設(shè)備上部署模型至關(guān)重要。假設(shè)要將一個(gè)大型的深度學(xué)習(xí)模型部署到移動(dòng)設(shè)備上,同時(shí)保持一定的性能。以下哪種模型壓縮方法在減少模型參數(shù)數(shù)量和計(jì)算量方面最為有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上方法綜合運(yùn)用15、自然語言處理是人工智能的重要研究方向之一,其目標(biāo)是讓計(jì)算機(jī)理解和生成人類語言。以下關(guān)于自然語言處理的說法,錯(cuò)誤的是()A.詞法分析、句法分析和語義理解是自然語言處理中的關(guān)鍵步驟B.機(jī)器翻譯是自然語言處理的重要應(yīng)用之一,但目前的機(jī)器翻譯質(zhì)量已經(jīng)完全達(dá)到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務(wù)都屬于自然語言處理的范疇D.自然語言處理面臨著詞匯歧義、句法結(jié)構(gòu)復(fù)雜和語義理解困難等諸多挑戰(zhàn)二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的差異。2、(本題5分)簡述智能客服的實(shí)現(xiàn)原理和優(yōu)勢。3、(本題5分)簡述人工智能在氣象預(yù)報(bào)中的進(jìn)展。4、(本題5分)解釋人工智能中的隱私保護(hù)措施。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)借助TensorFlow構(gòu)建一個(gè)生成對(duì)抗網(wǎng)絡(luò)(GAN)用于圖像去噪。比較去噪前后圖像的質(zhì)量差異。2、(本題5分)使用聚類算法對(duì)生物數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的生物群落和生態(tài)關(guān)系,為生態(tài)保護(hù)和可持續(xù)發(fā)展提供支持。3、(本題5分)使用Python中的TensorFlow庫,構(gòu)建一個(gè)簡單的多層感知機(jī)(MLP)模型,用于對(duì)鳶尾花數(shù)據(jù)集進(jìn)行分類。要求對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,包括數(shù)據(jù)標(biāo)準(zhǔn)化和劃分訓(xùn)練集、測試集,設(shè)置合適的優(yōu)化器和損失函數(shù),訓(xùn)練模型并評(píng)估其在測試集上的準(zhǔn)確率。4、(本題5分)借助TensorFlow構(gòu)建一個(gè)圖像風(fēng)格遷移模型,能夠?qū)崿F(xiàn)多種藝術(shù)風(fēng)格的遷移。評(píng)估不同風(fēng)格的效果和用戶滿意度。5、(本題5分)利用Python的OpenCV庫,實(shí)現(xiàn)對(duì)視頻中的車牌識(shí)別系統(tǒng)。包括車牌定位、字符分割和識(shí)別,提高識(shí)別準(zhǔn)確率和速度。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)研究一個(gè)基于人工智能的健身計(jì)劃制定系統(tǒng),分析其

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論