版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省湘潭市重點中學2025屆高考數(shù)學考前最后一卷預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,由程序框圖輸出的為()A.1 B.0 C. D.2.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.3.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.4.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.5.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.46.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.7.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.48.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.89.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.10.已知向量,,若,則()A. B. C. D.11.設(shè)數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.3612.復數(shù),若復數(shù)在復平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____。14.已知函數(shù)在定義域R上的導函數(shù)為,若函數(shù)沒有零點,且,當在上與在R上的單調(diào)性相同時,則實數(shù)k的取值范圍是______.15.已知函數(shù)有且只有一個零點,則實數(shù)的取值范圍為__________.16.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點,則的值最小時,___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設(shè)過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.18.(12分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.19.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.20.(12分)已知△ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.21.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.22.(10分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.2、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學運算的核心素養(yǎng)3、D【解析】
設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.4、D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.5、C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.6、D【解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.7、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.8、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.9、B【解析】命題p:,為,又為真命題的充分不必要條件為,故10、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎(chǔ)題.11、B【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.12、A【解析】
先通過復數(shù)在復平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,得到,再利用復數(shù)的除法求解.【詳解】因為復數(shù)在復平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,且復數(shù),所以所以故選:A【點睛】本題主要考查復數(shù)的基本運算和幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。14、【解析】
由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增函數(shù),則在,單調(diào)遞增,求導,則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),,,又與的單調(diào)性相同,在上單調(diào)遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:【點睛】本題考查導數(shù)的綜合應(yīng)用,考查利用導數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計算能力,屬于中檔題.15、【解析】
當時,轉(zhuǎn)化條件得有唯一實數(shù)根,令,通過求導得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當時,,故不是函數(shù)的零點;當時,即,令,,,當時,;當時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實數(shù)根,則.故答案為:.【點睛】本題考查了導數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.16、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)();(2)證明見解析.【解析】
(1)設(shè)點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設(shè),由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點問題,考查學生的計算能力,屬于中檔題.18、(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解析】
(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,,再結(jié)合中位數(shù)的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設(shè)內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設(shè)一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設(shè)內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設(shè)事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計算等知識的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標系,用空間向量法求空間角.20、(1);(2)或.【解析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設(shè)直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向量數(shù)量積的坐標公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甲乙雙方關(guān)于城市綜合體建設(shè)項目合作合同
- 五年級數(shù)學(小數(shù)四則混合運算)計算題專項練習及答案匯編
- 2025年度城市綜合體土地使用權(quán)轉(zhuǎn)讓居間服務(wù)協(xié)議3篇
- 2025年度合同臺賬自動提醒系統(tǒng)安裝與調(diào)試服務(wù)合同3篇
- 2025名義法人免責協(xié)議書:能源管理優(yōu)化合作協(xié)議
- 2025年度購物中心商鋪拆墻施工與室內(nèi)外照明設(shè)計合同2篇
- 2025年度航空航天裝備公司借款協(xié)議書版2篇
- 2025年度二零二五年度綠色果園土地承包與可持續(xù)發(fā)展協(xié)議3篇
- 2025年度海洋工程鋼筋材料供應(yīng)及安裝服務(wù)合同3篇
- 2025年度二零二五年度廣告宣傳勞務(wù)合同3篇
- 民間文學概論課件
- 城市防洪排澇系統(tǒng)的設(shè)計與實施
- 廣西壯族自治區(qū)南寧市2023-2024學年九年級上學期期末數(shù)學試題(含答案)
- 建筑設(shè)計交通分析報告
- 標榜四大基本型課件
- 2023-2024學年廣東省深圳市重點中學高考適應(yīng)性考試歷史試卷含解析
- 【直接打印】部編版八年級上冊歷史期末復習:專題觀點論述題總結(jié)
- 中建履約過程風險發(fā)函時點提示及函件指引(2023年)
- 不銹鋼管理制度
- 2023年4月自考10424資本運營與融資試題及答案含解析
- 第五章 汽車大燈翻新修復
評論
0/150
提交評論