版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省新野縣一中2025屆高考數(shù)學三模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則()A. B. C.1 D.22.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.3.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.4.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.5.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.7.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.8.已知集合,,則()A. B.C. D.9.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題10.已知向量,夾角為,,,則()A.2 B.4 C. D.11.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.12.已知復數(shù),則的虛部為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知關于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.14.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.15.在中,,點是邊的中點,則__________,________.16.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.18.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.19.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.21.(12分)設函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當時,設的最小值為,若恒成立,求實數(shù)t的取值范圍.22.(10分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.2、B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.3、B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.4、D【解析】
如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.5、C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關鍵.6、D【解析】
設,,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.7、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學生的計算能力,屬于中檔題.8、C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.9、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.10、A【解析】
根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎題.11、C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.12、C【解析】
先將,化簡轉(zhuǎn)化為,再得到下結論.【詳解】已知復數(shù),所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設,求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設,其中,由不等式,可得:,則,當時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.14、【解析】
先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關系,這個比例關系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關系,解題是由把線段長的比例關系用點的橫坐標表示.15、2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.16、【解析】
由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關鍵是根據(jù)幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質(zhì),可大大減少計算量.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.18、(1)(2)①,,②72【解析】
(1)將每組數(shù)據(jù)的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應概率的對稱性.19、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】
(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據(jù)垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據(jù)垂直關系確定位置,意在考查學生的計算能力和空間想象能力.20、(1)(2)【解析】
(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.21、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數(shù)的導數(shù),由于參數(shù)的范圍對導數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數(shù)在上是減函數(shù),所以成立;當時,若則,故函數(shù)在上是增函數(shù),即對時,,與題意不符;綜上,為所求.【點睛】本題考查導數(shù)在最大值與最小值問題中的應用,求解本題關鍵是根據(jù)導數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人租車合同2024年度版:車輛保險及責任劃分3篇
- 二零二五年度第一章:數(shù)字鄉(xiāng)村建設與運營合同協(xié)議書3篇
- 二零二五年度短途運輸合同環(huán)境友好條款3篇
- 二零二五年度服務器及配件全球采購與供應鏈管理合同
- 二零二五年度油氣田安全環(huán)保責任書范本3篇
- 小學美術教育中的多元創(chuàng)意繪畫教學方法
- 二零二五年度荒料開采與銷售管理合同3篇
- 二零二五年房地產(chǎn)抵押貸款估價委托合同模板3篇
- 2025年度校服生產(chǎn)與校園形象設計服務合同3篇
- 崇明生態(tài)島綠色發(fā)展資源循環(huán)利用的實踐與探索
- 新時代高職英語(基礎模塊)Unit1
- 注冊電氣工程師公共基礎高數(shù)輔導課件
- 民用無人駕駛航空器運行安全管理規(guī)則
- 車輛維修技術方案
- 土方勞務分包合同中鐵十一局
- 中考古詩詞鑒賞情感篇(田霞)課件
- 卵巢癌診斷和治療課件
- 物業(yè)公司內(nèi)部承包協(xié)議(掛靠協(xié)議)
- 輸煤系統(tǒng)設備安裝施工方案
- 江蘇省宿遷市2022-2023學年高一上學期期末數(shù)學試題
- 公共部分裝修工程 施工組織設計
評論
0/150
提交評論