2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷_第1頁(yè)
2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷_第2頁(yè)
2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷_第3頁(yè)
2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷_第4頁(yè)
2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年北師大版高一數(shù)學(xué)下冊(cè)月考試卷962考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共8題,共16分)1、若a=20.5,b=logπ3,c=log20.5;則()

A.a>b>c

B.b>a>c

C.c>a>b

D.b>c>a

2、函數(shù)則=()

A.

B.

C.

D.

3、【題文】設(shè)集合集合則集合()A.{1,3,1,2,4,5}B.C.D.4、【題文】已知實(shí)數(shù)滿足且若為方程的兩個(gè)實(shí)數(shù)根,則的取值范圍為【】.A.B.C.D.5、【題文】定義在上的函數(shù)滿足下列兩個(gè)條件:⑴對(duì)任意的恒有成立;⑵當(dāng)時(shí),記函數(shù)若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A.B.C.D.6、【題文】若函數(shù)的定義域和值域都是[0,1],則a=()A.B.C.D.27、已知A={x∈z|2x2+x-1=0}、B={x|4x2+1=0}.則A∪B=()A.{--1}B.{}C.{-1}D.{-1}8、不論m為何值,直線(m-1)x+(2m-1)y=m-5恒過(guò)定點(diǎn)()A.B.(-2,0)C.(2,3)D.(9,-4)評(píng)卷人得分二、填空題(共8題,共16分)9、如圖示,一個(gè)幾何體的俯視圖是正三角形,則底面三角形的高為_(kāi)___.

10、的最小正周期是____.11、若=2e1+e2,=e1-3e2,=5e1+λe2,且B、C、D三點(diǎn)共線,則實(shí)數(shù)λ=__________.12、若則的取值范圍是13、在等差數(shù)列中,若則.14、【題文】在不考慮空氣阻力的情況下,火箭的最大速度v(單位:m/s)和燃料的質(zhì)量M(單位:kg)、火箭(除燃料外)的質(zhì)量m(單位:kg)的函數(shù)關(guān)系式為v=2000ln當(dāng)燃料質(zhì)量是火箭質(zhì)量的________倍時(shí),火箭的最大速度可以達(dá)到12km/s.15、若α+β=則(1﹣tanα)(1﹣tanβ)的值為_(kāi)___.16、設(shè)e1鈫?,e2鈫?

是兩個(gè)不共線的向量,已知AB鈫?=2e1鈫?+me2鈫?,BC鈫?=e1鈫?+3e2鈫?

若ABC

三點(diǎn)共線,則實(shí)數(shù)m=

______.評(píng)卷人得分三、證明題(共7題,共14分)17、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.18、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.19、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).20、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.21、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.22、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).23、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、作圖題(共2題,共20分)24、作出下列函數(shù)圖象:y=25、以下是一個(gè)用基本算法語(yǔ)句編寫(xiě)的程序;根據(jù)程序畫(huà)出其相應(yīng)的程序框圖.

評(píng)卷人得分五、綜合題(共3題,共12分)26、如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(4;0);與y軸正半軸交于點(diǎn)E(0,4),邊長(zhǎng)為4的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;

(1)求拋物線的函數(shù)表達(dá)式;

(2)如圖2;若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q.設(shè)點(diǎn)A的坐標(biāo)為(m,n)

①當(dāng)PO=PF時(shí);分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;

②當(dāng)n=2時(shí);若P為AB邊中點(diǎn),請(qǐng)求出m的值;

(3)若點(diǎn)B在第(2)①中的PF所在直線l上運(yùn)動(dòng);且正方形ABCD與拋物線有兩個(gè)交點(diǎn),請(qǐng)直接寫(xiě)出m的取值范圍.

27、已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(-3;0);B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.

(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);

(2)求系數(shù)a的取值范圍;

(3)設(shè)拋物線的頂點(diǎn)為D;求△BCD中CD邊上的高h(yuǎn)的最大值.

(4)設(shè)E,當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.28、數(shù)學(xué)課上;老師提出:

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),點(diǎn)B在x軸上,且在點(diǎn)A的右側(cè),AB=OA,過(guò)點(diǎn)A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于點(diǎn)M,直線CD交y軸于點(diǎn)H,記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的縱坐標(biāo)為yH.

同學(xué)發(fā)現(xiàn)兩個(gè)結(jié)論:

①S△CMD:S梯形ABMC=2:3②數(shù)值相等關(guān)系:xC?xD=-yH

(1)請(qǐng)你驗(yàn)證結(jié)論①和結(jié)論②成立;

(2)請(qǐng)你研究:如果上述框中的條件“A的坐標(biāo)(1;0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請(qǐng)說(shuō)明理由);

(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫(xiě)出結(jié)果并說(shuō)明理由)參考答案一、選擇題(共8題,共16分)1、A【分析】

∵20.5>2=1,0<logπ3<logππ=1,log20.5<log21=0;

∴a>b>c.

故選A.

【解析】【答案】利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)即可得出.

2、A【分析】

∵函數(shù)

∴=

=

=-

故選A.

【解析】【答案】根據(jù)所給的函數(shù)式;代入自變量的值,是一個(gè)分?jǐn)?shù)指數(shù)的運(yùn)算,要先把分?jǐn)?shù)指數(shù)形式變化為根式形式,還有一個(gè)負(fù)指數(shù)的整理,最后合并同類(lèi)項(xiàng),得到結(jié)果.

3、C【分析】【解析】因?yàn)榧螦={1,3},B={1,2,4,5}因此故選C.【解析】【答案】C4、A【分析】【解析】解:由題意得到且說(shuō)明a>0,C<0,則利用為方程的兩個(gè)實(shí)數(shù)根;有。

因?yàn)橐虼诉x擇A【解析】【答案】A5、C【分析】【解析】因?yàn)樗?/p>

當(dāng)時(shí),則

當(dāng)時(shí),則

當(dāng)有

所以圖象大致如下:

恰有兩個(gè)零點(diǎn),則函數(shù)與過(guò)定點(diǎn)且斜率存在的直線恰有兩個(gè)交點(diǎn),結(jié)合圖形可得,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取到最小值而最大不能超過(guò)經(jīng)過(guò)點(diǎn)的直線,即綜上可得,故選C?!窘馕觥俊敬鸢浮緾6、A【分析】【解析】要使函數(shù)。

的值域都是[0,1],需使解得故選A【解析】【答案】A7、C【分析】解:由2x2+x-1=0,得x=-1或x=

∴A={x∈z|2x2+x-1=0}={-1}.

又B={x|4x2+1=0}=?;

∴A∪B={-1}.

故選:C.

求解一元二次方程化簡(jiǎn)A;B,然后直接利用并集運(yùn)算求解.

本題考查了并集及其運(yùn)算,考查了一元二次方程的解法,是基礎(chǔ)題.【解析】【答案】C8、D【分析】解:∵(m-1)x+(2m-1)y=m-5;

∴m(x+2y-1)-x-y+5=0;

∵不論m為何值;直線(m-1)x+(2m-1)y=m-5恒過(guò)定點(diǎn);

解得:.

∴直線(m-1)x+(2m-1)y=m-5恒過(guò)定點(diǎn)(9;-4).

故選:D.

(m-1)x+(2m-1)y=m-5?m(x+2y-1)-x-y+5=0,解方程組即可求得答案.

本題考查恒過(guò)定點(diǎn)的直線,考查轉(zhuǎn)化思想與方程思想的綜合應(yīng)用,屬于中檔題.【解析】【答案】D二、填空題(共8題,共16分)9、略

【分析】

由題意可知;三視圖的側(cè)視圖與俯視圖的寬相等;

所以底面三角形的高為:2.

故答案為:2.

【解析】【答案】利用三視圖的基本知識(shí);推出側(cè)視圖的寬就是俯視圖三角形的高,然后求出結(jié)果.

10、略

【分析】

∵y=sinx的周期為2π;

∴y=3sin(+)的周期為==4π.

故答案為:4π

【解析】【答案】根據(jù)y=sinx的周期為2π,可知y=Asin(ωx+φ)的周期為T(mén)=代入計(jì)算即可.

11、略

【分析】:待定系數(shù)法:由已知可得=-=(e1-3e2)-(2e1+e2)=-e1-4e2,=-=(5e1+λe2)-(e1-3e2)=4e1+(λ+3)e2,由于B、C、D三點(diǎn)共線,所以存在實(shí)數(shù)m使得=m即-e1-4e2=m[4e1+(λ+3)e2].所以消去m得λ=13.【解析】【答案】1312、略

【分析】【解析】【答案】____13、略

【分析】試題分析:利用考點(diǎn):等差數(shù)列的前n項(xiàng)和公式,等差數(shù)列的性質(zhì)【解析】【答案】42014、略

【分析】【解析】由2000ln=12000,得1+=e6,所以=e6-1.【解析】【答案】e6-115、2【分析】【解答】解:若α+β=則tan(α+β)=﹣1=∴tanα+tanβ=tanαtanβ﹣1.

∴(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣(tanαtanβ﹣1)+tanαtanβ=2;

故答案為:2.

【分析】由題意可得tan(α+β)=﹣1=即tanα+tanβ=tanαtanβ﹣1,代入(1﹣tanα)(1﹣tanβ)的展開(kāi)式,化簡(jiǎn)可得結(jié)果.16、略

【分析】解:隆脽e1鈫?,e2鈫?

是兩個(gè)不共線的向量,AB鈫?=2e1鈫?+me2鈫?,BC鈫?=e1鈫?+3e2鈫?

若ABC

三點(diǎn)共線;

隆脿AB鈫?=婁脣BC鈫?

即2e1鈫?+me2鈫?=婁脣e1鈫?+3婁脣e2鈫?

隆脿{m=3位2=位

解得實(shí)數(shù)m=6

故答案為:6

由已知得AB鈫?=婁脣BC鈫?

即2e1鈫?+me2鈫?=婁脣e1鈫?+3婁脣e2鈫?

由此能求出實(shí)數(shù)m

本題考查實(shí)數(shù)值的求法,考查平面向量坐標(biāo)運(yùn)算法則、向量平行等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.【解析】6

三、證明題(共7題,共14分)17、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.18、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.19、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=20、略

【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.21、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.22、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=23、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.四、作圖題(共2題,共20分)24、【解答】?jī)绾瘮?shù)y={#mathml#}x32

{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過(guò)原點(diǎn)且單調(diào)遞增,如圖所示;

【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫(huà)出題目中的函數(shù)圖象即可.25、解:程序框圖如下:

【分析】【分析】根據(jù)題目中的程序語(yǔ)言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號(hào)及其作用,即可畫(huà)出流程圖.五、綜合題(共3題,共12分)26、略

【分析】【分析】(1)已知拋物線的對(duì)稱軸是y軸;頂點(diǎn)是(0,4),經(jīng)過(guò)點(diǎn)(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;

(2)①過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G;根據(jù)三線合一定理可以求得G的坐標(biāo),則P點(diǎn)的橫坐標(biāo)可以求得,把P的橫坐標(biāo)代入拋物線的解析式,即可求得縱坐標(biāo),得到P的坐標(biāo),再根據(jù)正方形的邊長(zhǎng)是4,即可求得Q的縱坐標(biāo),代入拋物線的解析式即可求得Q的坐標(biāo),然后利用待定系數(shù)法即可求得直線PF的解析式;

②已知n=2;即A的縱坐標(biāo)是2,則P的縱坐標(biāo)一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標(biāo),根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標(biāo),從而求得m的值;

(3)假設(shè)B在M點(diǎn)時(shí),C在拋物線上或假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí),D點(diǎn)同時(shí)在拋物線上時(shí),求得兩個(gè)臨界點(diǎn),當(dāng)B在MP和FN之間移動(dòng)時(shí),拋物線與正方形有兩個(gè)交點(diǎn).【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過(guò)點(diǎn)E(0;4),F(xiàn)(4,0)

,解得;

∴y=-x2+4;

(2)①過(guò)點(diǎn)P作PG⊥x軸于點(diǎn)G;

∵PO=PF∴OG=FG

∵F(4;0)∴OF=4

∴OG=OF=×4=2;即點(diǎn)P的橫坐標(biāo)為2

∵點(diǎn)P在拋物線上。

∴y=-×22+4=3;即P點(diǎn)的縱坐標(biāo)為3

∴P(2;3)

∵點(diǎn)P的縱坐標(biāo)為3;正方形ABCD邊長(zhǎng)是4,∴點(diǎn)Q的縱坐標(biāo)為-1

∵點(diǎn)Q在拋物線上,∴-1=-x2+4

∴x1=2,x2=-2(不符題意;舍去)

∴Q(2;-1)

設(shè)直線PF的解析式是y=kx+b;

根據(jù)題意得:;

解得:,

則直線的解析式是:y=-x+6;

②當(dāng)n=2時(shí);則點(diǎn)P的縱坐標(biāo)為2

∵P在拋物線上,∴2=-x2+4

∴x1=2,x2=-2

∴P的坐標(biāo)為(2,2)或(-2;2)

∵P為AB中點(diǎn)∴AP=2

∴A的坐標(biāo)為(2-2,2)或(-2-2;2)

∴m的值為2-2或-2-2;

(3)假設(shè)B在M點(diǎn)時(shí);C在拋物線上,A的橫坐標(biāo)是m,則B的橫坐標(biāo)是m+4;

代入直線PF的解析式得:y=-(m+4)+6=-m;

則B的縱坐標(biāo)是-m,則C的坐標(biāo)是(m+4,-m-4).

把C的坐標(biāo)代入拋物線的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);

當(dāng)B在E點(diǎn)時(shí);AB經(jīng)過(guò)拋物線的頂點(diǎn),則E的縱坐標(biāo)是4;

把y=4代入y=-x+6,得4=-x+6,解得:x=;

此時(shí)A的坐標(biāo)是(-,4),E的坐標(biāo)是:(;4),此時(shí)正方形與拋物線有3個(gè)交點(diǎn).

當(dāng)點(diǎn)B在E點(diǎn)時(shí),正方形與拋物線有兩個(gè)交點(diǎn),此時(shí)-1-<m<-;

當(dāng)點(diǎn)B在E和P點(diǎn)之間時(shí),正方形與拋物線有三個(gè)交點(diǎn),此時(shí):-<x<-2;

當(dāng)B在P點(diǎn)時(shí);有兩個(gè)交點(diǎn);

假設(shè)當(dāng)B點(diǎn)在N點(diǎn)時(shí);D點(diǎn)同時(shí)在拋物線上時(shí);

同理,C的坐標(biāo)是(m+4,-m-4),則D點(diǎn)的坐標(biāo)是:(m,-m-4);

把D的坐標(biāo)代入拋物線的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);

當(dāng)B在F與N之間時(shí),拋物線與正方形有兩個(gè)交點(diǎn).此時(shí)0<m<3+.

故m的范圍是:-1-<m-或m=2或0<m<3+.27、略

【分析】【分析】(1)由拋物線y=ax2+bx+c過(guò)點(diǎn)A(-3;0),B(1,0),得出c與a的關(guān)系,即可得出C點(diǎn)坐標(biāo);

(2)利用已知得出△AOC∽△COB;進(jìn)而求出OC的長(zhǎng)度,即可得出a的取值范圍;

(3)作DG⊥y軸于點(diǎn)G,延長(zhǎng)DC交x軸于點(diǎn)H,得出拋物線的對(duì)稱軸為x=-1,進(jìn)而求出△DCG∽△HCO,得出OH=3,過(guò)B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;

(4)連接CE,過(guò)點(diǎn)N作NP∥CD交y軸于P,連接EF,根據(jù)三角形的面積公式求出S△CAEF=S四邊形EFCB,根據(jù)NP∥CE,求出,設(shè)過(guò)N、P兩點(diǎn)的一次函數(shù)是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求出A、C兩點(diǎn)的直線的解析式,組成方程組求出即可.【解析】【解答】解:(1)∵拋物線y=ax2+bx+c過(guò)點(diǎn)A(-3;0),B(1,0);

∴消去b;得c=-3a.

∴點(diǎn)C的坐標(biāo)為(0;-3a);

答:點(diǎn)C的坐標(biāo)為(0;-3a).

(2)當(dāng)∠ACB=90°時(shí);

∠AOC=∠BOC=90°;∠OBC+∠BCO=90°,∠ACO+∠BCO=90°;

∴∠ACO=∠OBC;

∴△AOC∽△COB,;

即OC2=AO?OB;

∵AO=3;OB=1;

∴OC=;

∵∠ACB不小于90°;

∴OC≤,即-c≤;

由(1)得3a≤;

∴a≤;

又∵a>0;

∴a的取值范圍為0<a≤;

答:系數(shù)a的取值范圍是0<a≤.

(3)作DG⊥y軸于點(diǎn)G;延長(zhǎng)DC交x軸于點(diǎn)H,如圖.

∵拋物線y=ax2+bx+c交x軸于A(-3;0),B(1,0).

∴拋物線的對(duì)稱軸為x=-1.

即-=-1,所以b=2a.

又由(1)有c=-3a.

∴拋物線方程為y=ax2+2ax-3a,D點(diǎn)坐標(biāo)為(-1,-4a).

于是CO=3a;GC=a,DG=1.

∵DG∥OH;

∴△DCG∽△HCO;

∴,即;得OH=3,表明直線DC過(guò)定點(diǎn)H(3,0).

過(guò)B作BM⊥DH;垂足為M,即BM=h;

∴h=HBsin∠OHC=2sin∠OHC.

∵0<CO≤;

∴0°<∠OHC≤30°,0<sin∠OHC≤.

∴0<h≤1;即h的最大值為1;

答:△BCD中CD邊上的高h(yuǎn)的最大值是1.

(4)由(1)、(2)可知,當(dāng)∠ACB=90°時(shí),,;

設(shè)AB的中點(diǎn)為N,連接CN,則N(-1,0),CN將△ABC的面積平分,

連接

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論