版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
checkfor
updates
DigitalTwinsforRobotSystemsinManufacturing
AliAhmadMalik,GuodongShao,andJaneTarakhovsky
AbstractTheincreasingneedforindustrialautomationisdrivingtheadoptionofrobotics,withnewdevelopmentssuchashuman–robotcollaborationthroughautonomousmobilerobotsandcollaborativeroboticarms.Whileautomationimprovesproductqualityandworkingconditionsandlowersmanufacturingcosts,itcanalsolimitmanufacturingadaptability.Therefore,whenintegratingrobotsinmanufacturing,thereisapressingneedtosimplifythemethodstodevelop,install,recon?gure,andoperaterobotsystemstoachievegreateradaptability.ThisiswheretheconceptofDigitalTwin,whichreplicatesthebehaviorofacomplexsysteminavirtualenvironmentforanalysisandoptimization,comesintoplay.Inrobotics,theDigitalTwintechnologyisexpectedtoaddressthechallengesassociatedwithdesigning,testing,commissioning,andrecon?gurations.ThisrequiresaDigitalTwintoaccuratelyrepresentvariousdimensionsofaroboticsystemunderproductionvariables.ThisstudycharacterizesthecomponentsofarobotsystemthatneedtobemodeledinaDigitalTwintocreateatrustworthyvirtualreplicaofaphysicalrobotsystem.ADigitalTwinofthiskindcanbeutilizedthroughoutthelifecycleofthephysicalrobotinstallationacrossvarioususecases.
KeywordsRobotics·DigitalTwin·Flexibleautomation·Manufacturingsystems·Simulation·Systemdesign
A.A.Malik(B)·J.Tarakhovsky
DepartmentofIndustrialandSystemsEngineering,OaklandUniversity,Rochester,MI48309,USA
e-mail:
aliahmadmalik@
J.Tarakhovsky
e-mail:
janetarakhovsky@
G.Shao
EngineeringLaboratory,NationalInstituteofStandardsandTechnology,Gaithersburg,MD20899,USA
e-mail:
guodong.shao@
307
?TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2024
M.GrievesandE.Hua(eds.),DigitalTwins,Simulation,andtheMetaverse,SimulationFoundations,MethodsandApplications,
/10.1007/978-3-031-69107-2_13
308A.A.Maliketal.
1Introduction
Modernmanufacturingsystemsarecomplex,withfacilitiesevolvingintolargenetworksofdata-connectedmechatroniccomponents
[1
].Thecomplexityofthesesystemsstemsfromthequantityofinformationthatspansvariouslifecyclephases,includingdesign,development,commissioning,operations,andend-of-life[
2
,
3
].Theelevatedcomplexityandinterconnectivitymakethelifecyclemanagementofmodern-daymanufacturingsystemsmorechallenging.Conversely,demandisincreasingformanufacturingsystemstopossessresilienceandadaptability
[4
].Addressingthesechallengesincomplexscenariosrequiresenablingsmartmanu-facturingthroughdigitalization,dataconnectivity,andtheintegrationofmachinelearning[
5
].Smartmanufacturing,besidesresilience,canbringcostreduction,enhanceworkers’well-being,andresultinabetterreturnoninvestment(ROI).
Industry4.0,orthefourthindustrialrevolution,isthenetsociotechnologicalimpactofinfusingemergingtechnologiessuchasadditivemanufacturing,machinelearning,robotics,simulations,andtheInternetofThingsinproductsandtheirmanu-facturingsystems.AdvancedroboticautomationstandsoutasoneoftheenablersforIndustry4.0[
6
].Moderninstallationsstrivetomakeroboticautomationmore?exible,adaptable,safe,andcost-effectivethantraditionalroboticsimplementa-tions.However,?exibleapproachesarelackingindevelopingplug-and-playhard-ware,programmingtherobots,controlprogramgeneration,taskscheduling,layoutplanning,safetyassessment,andalignmentwithproductionplans.
Advancementsinvirtualization,sensingtechnologies,andcomputingpowerfacil-itatetherealizationofDigitalTwins(DTs),whichenablethetestingandvalidationthroughoutthedesign,development,andcontrolphasesofacomplexsysteminavirtualspace.Differentscienti?cdomainsincreasinglyrecognizethepotentialvalueofDTsformanagingcomplexityinareassuchasmanufacturing,transportation,aircraft,andspacemissions[
7
].Manufacturingcustomizationandrecon?gurabilityarevitaldomainstomanagethroughDTs[
7
].
Computermodelsprovideameanstoshortenthetimeneededtodesign,redesign,anddeployrobotsystems.Computer-basedvirtualmodelsofphysicalsystemscanbebene?cialfortestingandvalidatingtheproductionbeforeimplementation[
8
].Whilethismethodisconsistentwithtraditionalvirtualmodeling,theemerging“l(fā)ifecycle”approachandreal-timecommunicationbetweenphysicalandvirtualsystemsarepivotalconceptsofDTs[
9
].
ManystudieshavedocumentedthepotentialadvantagesandrelevanceofemployingDTsforrobotsystems[
10
–
12
].Ithasalsobeenobservedthatdevel-opingatrustworthyvirtualreplicaofarobotsystemistime-consuminganddemandsadvancedengineeringskillsandinvestmentindifferentengineeringsoft-ware.CreatinganddeployingaDTofarobotsystemshouldbestructured,simpli?ed,andstandardizedtorealizetheneededROI.ItrequiresidentifyingthecomponentsofarobotsystemthatarerelevanttothepurposeofitsDT.Moreover,the?exibilityoftheDTitselfiscriticaltoensurethattheDTcaneffortlesslybeadaptedtoevolvingcircumstances.
DigitalTwinsforRobotSystemsinManufacturing309
ThischapterpresentstheimportanceofDTsinroboticinstallationswithinmanu-facturingsystems.ThecomponentsoutlinedinaDTofarobotsystemcanassistresearchersandpractitionersindevelopingcost-effective,modular,and?exibleDTs,therebyimprovingtheresilienceofrobotinstallations.Thisisanessentialsteptowardachievingadaptablemanufacturingsystems.
Thekeycontributionsofthischapterareto:
1.PresentthecomponentsofaDTofarobotsystemfor?exibility
2.ExaminethelifecyclephasesofarobotsystemthataDTcansupport
3.ApplyDTsinrobotsystemsinmanufacturingsettings
4.PresentusecasesthatdemonstratetheutilizationofDTsinrobotsystems.
2ChallengesandOpportunitiesinContemporaryManufacturing
Thecontinuousdrivetoshortenproductlifecyclesemergesasasigni?canttransfor-mationinthecontemporarybusinesslandscape[
13
].Emergingsociotechnologicaltrendsrequireshorterproductdevelopmentandlaunchtimelines.Inthissetting,manufacturingcompaniesleverageemerginghardwareandsoftwaretechnologiesandtheirpotentialopportunities[
14
,
15
].
Asidefromtherapidpaceofchanges,manufacturersfaceashortageofskilledworkers.TherecentglobalexposuretotheCOVID-19pandemicalsodisplayedwidespreaddisruptionsinsupplychains[
16
]partlybecauseofashortageofworkersduetosocialdistancingmeasures.Researchstudiesidenti?edthatfuturefactoriescouldbetteraddresssuchchallengesbyadoptingmodular,?exible,andhuman-friendlyautomationsolutions
[17
].
Awaytodevelophuman-friendlyautomationsolutionsisthrough?exible,collab-orativerobots.Technologiesthatfacilitatetheswiftvalidationofnewmanufacturingstrategiesarealsoneeded.Therefore,futuremanufacturingsystemsmustnotonlyberepurposablebutalsobedesigned,developed,commissioned,andrecon?guredatasigni?cantlyfasterpace[
18
].
DTscanbeutilizedtoaddresstheresiliencerequirementswithinamanufac-turingsystem.Forexample,DTscanhelpreducethetimerequiredtovalidatenewmanufacturingstrategies,generateautomationprograms,andprovidemain-tenancesupport.Additionally,DTscanharnessreal-timeandhistoricaldatatoofferinsightsforprocessoptimization.Suchassistancecanpotentiallyenhancethelevelofresiliencethatamanufacturingsystemcanprovide.
310A.A.Maliketal.
3RoboticAutomationinManufacturing
Automationdescribesassigningphysicalandcognitivetaskstomachinesandsoft-waretoboostproductionanddecreasehumaneffort[
19
]Inmanufacturing,adoptingautomationbringsadvantagessuchasenhancingworkplacesafety,ef?ciency,quality,andcost-effectiveness[
20
,
21
].However,thisoftencomesatthecostofreducedproduction?exibility.Attheheartofindustrialautomationliesindustrialrobots.Thesubsequentsectionselaborateonthediversetypesofrobotsemployedinmanu-facturingfacilities.Figure
1
showsvariousindustrialrobottypes,includingspher-ical,SCARA(SelectiveComplianceAssemblyRobotArm),delta,Cartesian,andhumanoidrobots[
22
].Therobotselectionforaspeci?ctaskisbasedonthenatureofthetaskstobeautomated,availablespace,?nancialconstraints,andprocess-relatedconsiderations.Whiletheserobotsenhancemanufacturingef?ciency,theirapplica-tionsarelimitedincertainoperations,suchasassembly,whichonlyconstitutes7.3%ofroboticuse[
23
].
3.1TraditionalIndustrialRobots
Robotsarethepredominantforcedrivingtheindustrialautomationofphysicaltasks[
22
,
24
].Theserobots,characterizedby?xedpositioning,operationwithinenclo-sures,andtime-consumingrecon?gurationprocesses
[25
],fallintothecategoryof?xedautomationsolutions.Theycanhelpachievehighproductionvolumesbutmuststrictlybeseparatedfromhumaninteraction.Theyalsodemonstratelimited?exibility[
26
].Industrialrobotshaveprovensuccessfulinvarioussectors,includingautomotive,medicine,food,andelectronicsmanufacturing[
27
].Theprimaryreasonfortheunsuitabilityofrobotsinassemblyishumansafetyandthechallengesoftheirrecon?guration[
28
].
Fig.1Varioustypesofindustrialrobots
DigitalTwinsforRobotSystemsinManufacturing311
Fig.2Ahumanandrobotcoexistinginmanufacturing[
36
]
3.2CollaborativeRobots
Modernindustrialrobotsarelighter,portable,easytoprogram,andsafe.Thischangecanmeettheneedfor?exibilityintermsofmobility,capability,andcapacity
[29
].Theserobots,designedforcollaborationandcoexistencewithhumans(Fig.
2
),arecommonlyknownas“cobots”orcollaborativerobots
[30
].Acollaborativerobotcanbede?nedasamechanicaldeviceintendedfordirectphysicalinteractionwithhumans,aconcept?rstintroducedbyColgate[
31
]andfurtherdevelopedbyKruger[
32
].Cobotsallowhumansandrobotstoworktogethertoharnessthestrengthsofhumansandmachines.Thisconcept,oftencalledleanautomation,existsattheconvergenceofhuman?exibilityandmachineef?ciency[
33
].
Literatureshowcasesdiverseapplicationsofcobots,spanningpick-and-placeoperations,assemblytasks,welding,inspectionprocesses,andpacking
[34
].More-over,cobotshavebeenexploredasaviablesolutionforrapidlyrepurposingfactoriesinemergencies[
17
].Thepredominantuseofcobotshasbeeninmanufacturingsmallcomponentssuchasthoseassembledintoelectronics,appliances,andelectronicactu-ators[
28
,
35
].Withtheadvancementofsensingandsafetytechnologies,cobotsarebeingconsideredtoautomatelargeandheavycomponents.
3.3AutonomousMobileRobots
Autonomousmobilerobots(AMRs)representadistinctivecategorywithincollabo-rativerobots[
37
].Theyhaveprovenhighlyeffectiveinmaterialhandlingapplications
312A.A.Maliketal.
inmanufacturingsettings[
40
].Theiradaptabilityandversatilitymakethemwell-suitedfortasksrequiringinteractionswithhumans.Beyondmanufacturing,AMRshavefoundapplicationsinwarehouses,militaryoperations,healthcare,searchandrescuemissions,security,andhomeenvironments
[38
].Thisversatilityunderscoresthepotentialofmobilerobotstoautomateoperationsindiverse?elds.
Differentrobottypeshavestandardfeaturessuchasmechanicalmultijointedreprogrammableactuators,end-of-armtooling,machinevision,positioningtech-nology,andcontrolprograms.Adaptabilityisrecognizedasnecessaryformostmodern-dayrobots.Thefollowingsectionpresentsatypicalphysicalarchitectureofarobotinstallation.
4ArchitectureofaRobotSysteminManufacturing
Roboticsystemsinmanufacturingsettingsareavailableinvariousdesigns,layouts,andcon?gurations,in?uencedbyspeci?cusecases.Atypicalrobotcellcomprisesmultiplehardwareandsoftwarecomponents(Fig.
3
).Articulatedrobotarms,withoneormorereprogrammablemechanicaljoints,representmostrobotinstallations[
39
].Oneormoretools(endeffectors)areattachedtoarobotmanipulator’stoolposttoperformvariousfunctions.Arobotcontrolleroverseestheoperationsoftherobotsystem,connectingallexternalhardwarethroughtheinput/output(I/O)interfacesofthecontroller.Varioussensorsareembeddedintherobotbodyandintegratedexternallytomonitoritsperformanceandrespondtoemergingsituations.
Roboticarmsdesignedforhuman–robotcollaboration(HRC)typicallyhavepowerandforce-limitingbodies,speedandseparationmonitoring,handguiding,andemergencystopasstipulatedintheISO15066safetystandardforHRC[
21
].Theseattributesensuresafeinteractionbetweenroboticarmsandhumans
[40
].AMRscan
Fig.3Typicalcomponentsofarobotsysteminamanufacturingsetting
DigitalTwinsforRobotSystemsinManufacturing313
alsofacilitatethemobilityofaroboticarmwithintherobotsystem.Furthermore,collaborativerobotsmustcomplywiththeISO19649standard[
41
],whichestab-lishestermsrelatedtomobilerobotsoperatingonsolidsurfacesandengaginginindustrialrobotapplications.ToeffectivelyemploytheconceptofDTs,itisvitaltomodelmost,ifnotall,ofthesefeaturesofrobotsystemsintheirdigitalmodels.
5DTsforRobotsinManufacturing
ADTisavirtualrepresentationofthecomponentsanddynamicsofanobservablephysicalsystem[
44
].DTscanmirrorreal-timeoperatingconditionsandpredictthefuturebehaviorofaphysicalsystem[
45
].ThecoreconceptofaDTinvolvescreatingadigitalmodelofaphysicalsystemandlinkingeachcomponentofthedigitalmodeltoitscorrespondingphysicalassets.Inreturn,thevirtualmodelmustactasafront-runnerofthephysicalsystemtopredictorestimateitsfuturebehavior.
ThepresentunderstandingoftheDTconceptoriginatesfromtheideaofa“Con-ceptualIdealforPLM”(ProductLifecycleManagement)[
42
].Itproposesthateverysystemisasubsetoftwoothersystems:thephysicalsysteminthephysicalworldandavirtualsystemexistinginvirtualspace,containingallnecessaryinformationaboutthephysicalsystem.Thebidirectionalrelationshipbetweenthephysicalanddigitalsystemscanenhanceproductdesign,manufacturing,andservicethroughoutthesystem’slifecycle[
43
].
Themethodsofusinganinformationalvirtualmodeltorepresentthecomplexityofaphysicalsystemhaveevolved.Inearliertimes,thevirtualmodelexistedasamentalimage[
1
],limitedinitscapacitytoaddressquestionsaboutthesystem’sperformance.Inthemid-twentiethcentury,creatingvirtualmodelsbecamepossible,startingwith2DCAD(computer-aideddesign)objectsandadvancingto3Dmodelsanddynamicsimulations.Thesevirtualmodelsaretypicallydevelopedearlyinthesystem’slifecycle,i.e.,duringdesign.Thesemodelsoftenbecomeuselesswhenthesystemtransitionstotheoperationphase.
Thelinkageofdigitalmodelstotheirphysicalcounterpartsandtheintegratedintelligencethroughouttheirlifecyclearenowachievable(Fig.
4
).Thisenablesthemtounderstandoperationalbehaviorandassistinaddressingday-to-dayproduc-tionconstraints.Inthiscontext,DTscanbecategorizedintoDTprototypesandDTinstances[
44
].ADTprototypeisusedtore?nesystemdesign,presentingoptimalstaticanddynamicinformationtoachievedesiredoutcomes.Meanwhile,aDTinstanceintegratesmonitoring,service,sensing,andbehavioralinformationaboutthephysicaltwinduringitsoperations.DTinstancesexhibitpredictiveandinter-rogativebehaviors,whichprovebene?cialduringtheoperationalandmaintenancephases.
314A.A.Maliketal.
Fig.4ScopeofDTsinmanufacturingsystems
6LifecyclePhasesofRobotSystems
Aroboticsystemundergoesacomprehensivelifecycle,commencingwithitsdesignandconcludingatitsend-of-lifestage.Correspondingly,itsDTfollowsaparallellifecycle,adaptingtovariousscenariosandsystemevolutionthroughoutthelifecycle(Fig.
5
).ThesubsequentsectiondescribesthefunctionsofaDTacrossmultiplestagesinaroboticsystem’slifecycle.
Fig.5ConceptofaDigitalTwinsysteminhuman–robotcollaboration
DigitalTwinsforRobotSystemsinManufacturing315
6.1DesignoftheRobotSystem
Indevelopinganewrobotsystem,itiscustomarytoconstructvirtualmodelsbeforetheactualphysicalcounterpartisbuilt.Thisvirtualrepresentation,whichcanalsobereferredtoasaDTprototype,isconceivedtoconceptualizeand?nalizethesystem’sappearance,speci?cations,theselectionofoff-the-shelfcomponents,andtheoveralllayout.Despitetheabsenceofthecorrespondingphysicalcounterpartduringthedesignphase,theDTrepresentstheintendedphysicaltwin.Itenablestheexplorationofvariouswhat-ifscenarios,facilitatingswift,secure,andreliabledesignoutcomes.Thechoiceofrobotmanipulators,workstationdesign,layout,?xtures,and?nancialassessmentsarecriticalquestionsthatmustbeaddressedatthedesignstage.
6.2CommissioningtheRobotSystem
Theresultsderivedfromthedesignphaseprovideinformationfordevelopingthecomponentsofthephysicalsystem.Thedevelopedsystemthenmovestothecommis-sioningstage.Inthecaseofarobotsystem,thisstagemayentailthecreationofwork-stations,?xtures,feedingdevices,andotherhardwareelements.TheBillofMaterials(BOM)andBillofProcesses(BOP)canbegenerated,guidingthedevelopmentofthephysicalsystem.Throughoutthisphase,theconnectionbetweenthephysicalsystemsandtheirDTscanbeestablishedbylinkingtheDTtoanactualcontrollerorprogrammablelogiccontroller(PLC)toidentifypotentialerrors.Thismethodologyisanalogoustovirtualcommissioning(VC).VC,orhardware-in-the-loopsimula-tions,reducesdevelopmenttimebyfacilitatingvirtualtestingandintegrationwellbeforeactualcommissioning.ThephysicalrobotcanbeliveconnectedwithitsDT,allowingittoexecutetasksasdesignedintheDT.
6.3ScheduledandPreventiveMaintenance
Maintenanceisanessentialcomponentofmostproductionsystems.Emergingtech-nologiessuchasaugmentedreality(AR)orchatbotscanbeintegratedwithaDTtooptimizemaintenanceprocedures,whichcanbetterassistmaintenancepersonnelwithenhancedvisualizationtoolsforfaultdetectionandtrainingtasks.Virtualreality(VR)isanothervisualizationtechnologythatcanbeintegratedwiththeDT,particularlyfortraining.
Maintenancecanbene?tfromtheDTtechnologyinwayssuchas:
.Real-timeMonitoring:Datacapturingoperatingparameters,energyconsumption,andsystemhealth.
.PredictiveMaintenance:UseofmachinelearningwithinDTtopredictpotentialfailuresormaintenanceneedsbasedonperformancetrends.
316A.A.Maliketal.
.ConditionMonitoring:IoTsensorsprovidedataonsystemhealthindicators,whichcanbeintegratedwithDTforcontinuousconditionmonitoring.
.AssetTracking:Theusageandlifecycleofroboticsassets,suchasoperatinghours,replacementhistory,etc.,canbetrackedandhelpwithproactivemaintenancescheduling.
.RemoteDiagnosticsandTroubleshooting:Identifyingissuesremotelycanhelpreducedowntimeandimproveoverallef?ciency.
6.4OperationsandChangeovers
ThemostcompellingapplicationofDTtechnologyliesinitsapplicationthroughouttheoperationallifeofarobotsystem.Overtime,arobotsystemmayneedchangeovers,safetyassessments,productionanalyses,andmodi?cations.Assessingtheoverallequipmenteffectiveness(OEE)isanotherpracticalfacetwhenevaluatingaproductionsystemforcontinuousperformanceoptimization.ADTplaysapivotalroleinelevatingthequalityoftheseprocesses,therebyenhancingtheperformanceandreliabilityoftherobotsystem.ThishelpsjustifytheinvestmentinthecreationandmaintenanceofitsDT.
TheDTdevelopedduringthedesignphaseisextendedtofacilitatereal-timecommunicationwiththephysicalsystemduringoperation,enablingbehavioralanalysisandperformanceoptimization.Atthisstage,thesystemsynchronizesthereal-worlddatawiththeDT,enablingautomatedassessmentcycles.Thiscyber-physicalsystemintegratesproductionplanningandcontroldatabasestosupportschedulingproductionordersandchangeovers.TheDTisvaluableinsimplifyingtherecon?gurationorrepurposingoftherobotsysteminresponsetodemand?uctuations.
7ComponentsofaDTforaRobotSystem
Thissectionpresentsthefundamentalcomponentsormodulescomprisingaroboticsystem’sDT,asillustratedinFig.
6
.Traditionally,varioustoolsarerequiredtosimulateeachofthesecomponents.Connectivityprotocolscanenablenearreal-timecommunicationbetweenthesecomponents,streamliningthedevelopmentofanaccurateDTforaroboticsystem.
7.1StaticCADModeling
Theinitialstepinconstructingavirtualmanufacturingsystemistocreatea3DvisualizationusingCADsoftware.Thereisamultitudeoftoolsavailableforthis
DigitalTwinsforRobotSystemsinManufacturing317
Fig.6ComponentsofDTofrobotsystems
purpose.ThisCADdatacanbeobtaineddirectlyfromtheequipmentmanufacturer,ofteninstandardexchangeableformatssuchasSTEP(StandardfortheExchangeofProductData)[
45
].RobotmanufacturersofferCADmodelsoftheirrobots,andasimilarpracticeisfollowedbymanufacturersofrelatedequipment,suchasgrippers,?xtures,feeders,andtables.Furthermore,manysimulationtoolsfeatureabuilt-inlibraryofproprietaryandgenericfactoryresourceCADmodels.
AcriticalstepinpreparingtheCADdataiscreatinganassembly?leandconsol-idatingtheindividualCADmodelsofvariousdevicesandequipment.Thevirtualassemblymodelmustrepresentthecompletephysicalrobotsystembeinginvesti-gated.Eachcomponentcanbeassignedmaterialpropertiesandvisualizationtoaidinsubsequentanalyses.This?lecanbeexportedtovariousexchangeableformats,withSTEPbeingthemostcommonstandardformat.
7.2ProcessSimulation
TheCADdatacanbeimportedintoacontinuoussimulationenvironment.Creatingadynamicsimulationstartswithde?ningthekinematicsofeachactiveresourcewithinthesystem.Itinvolvesspecifyingpositionandlocationconstraints,jointtypes,jointlimits,andvelocitylimits.Forexample,agrippermayneedtobede?nedforits
318A.A.Maliketal.
motionkinematicjointtypes,limits,andactionposes.Thevisualization/simulationofaDTisachievedthroughthreesteps:(1)creatingthesimulationmodelofarobotsystemalongwithitsoperationsequences,akintoaGanttchart,(2)anevent-drivencontinuoussimulationthatrunsforapre-determinedtimeandcontrolledbyaninternallogicengine,and(3)thesimulationiscontrolledthroughsignalsfromavirtualPLCandotheremulators.ThissimulationbecomestheprimarycomponentoftheDTforvisualization,experimentation,andanalysis.Afterthesimulation,itcanperformanalyses(e.g.,collisiondetection,layoutassessment,cycletimeestimates)andoptimizations.Numerousproprietarytoolsareavailabletocreatethistypeofsimulation,whileopen-sourceenginescanalsobeutilized.
7.3AutomationProgram
PLCsserveasindustrialcomputersforprogrammingandmonitoringindustrialrobotsystems.Acriticalstepincommissioningarobot-basedmanufacturingsystemiscreatingandvalidatingtheautomationprogram.Usually,thisprogramiscreatedlaterinthedevelopmentstages.Developing,testing,andvalidatingtheautoma-tionprograminavirtualspace,alongwithprocesssimulation,enhancestherelia-bilityofthesystem’sperformance.EachPLChasitsprogrammingtool,andopen-sourceprogramdevelopmenttoolsarealsoavailable.Toensureinteroperability,PLCprogramsfollowtheIEC61131standard[
46
].TheIEC61131-3,developedbytheInternationalElectrotechnicalCommission(IEC),setsthestandardforPLCs’syntax,semantics,andinteroperability.ThedevelopedprogramsaredownloadedontoavirtualPLCandinterfacedwiththesimulation.
7.4MechatronicBehavior
Arobotsystemincludessensors,actuators,feeders,?xtures,andothermecha-tronicelements(Fig.
3
).Behavioralmodelingofthesedevicesenablesanaccuratevirtualmodeloftheentiresystem.TheFunctionalMock-upUnit(FMU)isatool-independent,freestandardcraftedfordynamicmodelexchangeandco-simulation.FMUsde?neacontainerandaninterfaceforsharingdynamicsimulationmodelsthroughacombinationofExtensibleMarkupLanguage(XML)?les,binaries,andC-code.Bothcommercialandopen-sourcetoolsareaccessibleforsimulatingthebehaviorofeachdeviceandinterfacingitwiththeprocesssimulation.
DigitalTwinsforRobotSystemsinManufacturing319
Fig.7Product
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《軟件工程A實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度玻璃采光井安裝工程合同范本2篇
- 2025版金融服務(wù)項(xiàng)目股份轉(zhuǎn)讓合同范本解析3篇
- 2025版濟(jì)寧銑刨機(jī)租賃及租賃設(shè)備保險(xiǎn)理賠合同3篇
- 2025年度新型環(huán)保材料研發(fā)與應(yīng)用項(xiàng)目合同3篇
- 《小屁孩日記》讀后感(合集15篇)
- 2024至2030年5-巰基甲基苯甲酸項(xiàng)目投資價(jià)值分析報(bào)告
- 二零二五年度EPS構(gòu)件綠色建材認(rèn)證供應(yīng)與安裝服務(wù)合同3篇
- 北京郵電大學(xué)世紀(jì)學(xué)院《中醫(yī)骨傷科學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年巢湖市中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 電力檢修員工先進(jìn)事跡
- 2014年七年級(jí)上期末考試數(shù)學(xué)試題及答案
- 初中數(shù)學(xué)問題情境創(chuàng)設(shè)論文
- 塑料注塑模具中英文對(duì)照外文翻譯文獻(xiàn)
- 中國(guó)旅游地理(第七版)第11章石林洞鄉(xiāng)-西南少數(shù)民族農(nóng)業(yè)文化旅游區(qū)
- 新教材浙教版八年級(jí)上冊(cè)初中數(shù)學(xué)全冊(cè)教案(教學(xué)設(shè)計(jì))
- 醫(yī)療器械的檢查與包裝講解課件
- 高頻焊接操作技術(shù)規(guī)范
- GB_T4897-2015刨花板(高清版)
- 公路工程竣工驗(yàn)收辦法
- 畢業(yè)設(shè)計(jì)(論文)安徽汽車產(chǎn)業(yè)的現(xiàn)狀分析及發(fā)展戰(zhàn)略研究
評(píng)論
0/150
提交評(píng)論