2024年滬教版九年級數(shù)學(xué)下冊月考試卷_第1頁
2024年滬教版九年級數(shù)學(xué)下冊月考試卷_第2頁
2024年滬教版九年級數(shù)學(xué)下冊月考試卷_第3頁
2024年滬教版九年級數(shù)學(xué)下冊月考試卷_第4頁
2024年滬教版九年級數(shù)學(xué)下冊月考試卷_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬教版九年級數(shù)學(xué)下冊月考試卷132考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共7題,共14分)1、以下是旅游衛(wèi)視、河北衛(wèi)視、鳳凰衛(wèi)視、甘肅衛(wèi)視四個電視臺的臺標(biāo),其中不屬于中心對稱圖形的是()A.B.C.D.2、(2013年四川南充3分)下列圖形中,∠2>∠1的是【】A.B.C.則D.3、【題文】已知∠AOB=30°,點P在∠AOB內(nèi)部,P1與P關(guān)于OB對稱,P2與P關(guān)于OA對稱,則P1,O,P2三點構(gòu)成的三角形是()

A、直角三角形B、鈍角三角形C、等腰三角形D、等邊三角形4、如圖,平行四邊形ABCD中,F(xiàn)是CD上一點,BF交AD的延長線于G,則圖中的相似三角形對數(shù)共有()A.8對B.6對C.4對D.2對5、某足球聯(lián)賽一個賽季共進(jìn)行26輪比賽(即每隊均需賽26場),其中勝一場得3分,平一場得1分,負(fù)一場得0分.某隊在這個賽季中平局的場數(shù)比負(fù)的場數(shù)多7場,結(jié)果共得34分,則這個隊在這一賽季中勝、平、負(fù)的場數(shù)依次是()A.7,13,6B.6,13,7C.9,12,5D.5,12,96、下列關(guān)于總體說法正確的是()A.要考察的對象叫做總體B.要研究的對象叫做總體C.要考察對象的全體叫做總體D.要研究的對象的數(shù)量叫做總體7、【題文】將100個數(shù)據(jù)分成8個組;如下表:

。組號。

1

2

3

4

5

6

7

8

頻樹。

11

14

12

13

13

x

12

10

則第六組的頻數(shù)為。

A.12B.13C.14D.15評卷人得分二、填空題(共9題,共18分)8、(2015秋?廣東校級期中)如圖,⊙C過原點,且與兩坐標(biāo)軸分別交于點A和點B,點A的坐標(biāo)為(0,3),M是第三象限內(nèi)⊙C上一點,∠BMO=120°,則⊙C的半徑長為____.9、如圖,AB是⊙O的一條弦,P是AB上的一點,PA=3,OP=PB=2,則⊙O的半徑等于____.

10、已知圓錐底面半徑為5cm,母線長為15cm,那么它的側(cè)面積為____cm2(結(jié)果保留π)11、(2007?桂林)2008年奧運會將在中國北京舉行,如圖五個相連的圓環(huán)是國際奧運會旗上的圖案,那么這五個圓中的任意兩個圓的位置關(guān)系是____.

12、計算:tan1°?tan45°?tan89°=____.13、某校6

名初中男生參加引體向上體育測試的成績分別為:852564

則這組數(shù)據(jù)的方差為______.14、在一個不透明的口袋里裝有1個紅球,2個白球和n個黃球,這些球除顏色外其余都相同.若從該口袋中任意摸出1個球,摸到白球的可能性大于黃球的可能性,則n等于____.15、已知:如圖,AB=EC,BF=CD,要證△ABF≌△ECD,只需補(bǔ)充條件____=FD或AB∥EC和____∥____.16、已知x1,x2是方程x2+3x-4=0的兩個根,那么:x21+x22=____.評卷人得分三、判斷題(共9題,共18分)17、如果一個三角形的兩個角分別為60和72,另一個三角形有兩個角分別為60°和48°,那么這兩個三角形可能不相似.____.(判斷對錯)18、三角形一定有內(nèi)切圓____.(判斷對錯)19、在Rt△ABC中,∠B=90°,所以a2+c2=b2.____(判斷對錯)20、有一個角是鈍角的三角形就是鈍角三角形.____(判斷對錯)21、了解某漁場中青魚的平均重量,采用抽查的方式____(判斷對錯)22、.____(判斷對錯)23、三角形三條高的交點不在三角形內(nèi)就在三角形外____.24、收入-2000元表示支出2000元.(____)25、在同一平面內(nèi),到三角形三邊所在直線距離相等的點只有一個評卷人得分四、解答題(共2題,共16分)26、(2007?昆明)如圖;AB和CD是同一地面上的兩座相距36米的樓房,在樓AB的樓頂A點測得樓CD的樓頂C的仰角為45°,樓底D的俯角為30度.求樓CD的高(結(jié)果保留根號).

27、在Rt鈻?ABC

中,AB=BC=4隆脧B=90鈭?

將一直角三角板的直角頂點放在斜邊AC

的中點P

處,將三角板繞點P

旋轉(zhuǎn),三角板的兩直角邊分別與邊ABBC

或其延長線上交于DE

兩點(

假設(shè)三角板的兩直角邊足夠長)

如圖(1)

圖(2)

表示三角板旋轉(zhuǎn)過程中的兩種情形.

(1)

直角三角板繞點P

旋轉(zhuǎn)過程中,當(dāng)BE=

______時,鈻?PEC

是等腰三角形;

(2)

直角三角板繞點P

旋轉(zhuǎn)到圖(1)

的情形時;求證:PD=PE

(3)

如圖(3)

若將直角三角板的直角頂點放在斜邊AC

的點M

處,設(shè)AMMC=mn(mn

為正數(shù))

試判斷MDME

的數(shù)量關(guān)系,并說明理由.

評卷人得分五、其他(共1題,共6分)28、某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時元收費.

(1)若某戶2月份用電90千瓦時;超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)

(2)下表是這戶居民3月、4月的用電情況和交費情況:。月份用電量(千瓦時)交電費總金額(元)3802544510根據(jù)上表數(shù)據(jù),求電廠規(guī)定的A值為多少?評卷人得分六、綜合題(共2題,共18分)29、閱讀材料:

如圖1;△ABC和△CDE都是等邊三角形,且點A;C、E在一條直線上,可以證明△ACD≌△BCE,則AD=BE.

解決問題:

(1)將圖1中的△CDE繞點C旋轉(zhuǎn)到圖2;猜想此時線段AD與BE的數(shù)量關(guān)系,并證明你的結(jié)論.

(2)如圖2;連接BD,若AC=2cm,CE=1cm,現(xiàn)將△CDE繞點C繼續(xù)旋轉(zhuǎn),則在旋轉(zhuǎn)過程中,△BDE的面積是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.

(3)如圖3,在△ABC中,點D在AC上,點E在BC上,且DE∥AB,將△DCE繞點C按順時針方向旋轉(zhuǎn)得到三角形CD′E′(使∠ACD′<180°),連接BE′,AD′,設(shè)AD′分別交BC、BE′于O、F,若△ABC滿足∠ACB=60°,BC=,AC=;

①求的值及∠BFA的度數(shù);

②若D為AC的中點,求△AOC面積的最大值.30、如圖;梯形ABCD中,AD∥BC,對角線AC⊥BC,AD=9,AC=12,BC=16,點E是邊BC上一個動點,∠EAF=∠BAC,AF交CD于點F;交BC延長線于點G,設(shè)BE=x.

(1)使用x的代數(shù)式表示FC;

(2)設(shè)=y;求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

(3)當(dāng)△AEG是等腰三角形時,直線寫出BE的長.參考答案一、選擇題(共7題,共14分)1、A【分析】【分析】根據(jù)中心對稱圖形定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心可得答案.【解析】【解答】解:A;是中心對稱圖形.故此選項錯誤;

B;不是中心對稱圖形.故此選項正確;

C;是中心對稱圖形.故此選項錯誤;

D;是中心對稱圖形.故此選項錯誤.

故選A.2、C【分析】根據(jù)對頂角的性質(zhì),平行四邊形的性質(zhì),三角形外角的性質(zhì),平行線的性質(zhì)逐一作出判斷:A、∠1=∠2(對頂角相等),故本選項錯誤;B、∠1=∠2(平行四邊形對角相等),故本選項錯誤;C、∠2>∠1(三角形的一個外角大于和它不相鄰的任何一個內(nèi)角),故本選項正確;D、如圖,∵a∥b,∴∠1=∠3?!摺?=∠3,∴∠1=∠2。故本選項錯誤。故選C。考點:對頂角的性質(zhì),平行四邊形的性質(zhì),三角形外角的性質(zhì),平行線的性質(zhì)?!窘馕觥俊敬鸢浮緾。3、D【分析】【解析】分析:根據(jù)軸對稱的性質(zhì)可知:OP1=OP2=OP,∠P1OP2=60°,即可判斷△P1OP2是等邊三角形.

解答:解:根據(jù)軸對稱的性質(zhì)可知;

OP1=OP2=OP,∠P1OP2=60°

∴△P1OP2是等邊三角形.

故選D.【解析】【答案】D4、B【分析】【分析】根據(jù)平行四邊形的性質(zhì),得到平行四邊形的對邊平行,即AD∥BC,AB∥CD;再根據(jù)相似三角形的判定方法:平行于三角形一邊的直線與三角形另兩邊或另兩邊的延長線所構(gòu)成的三角形相似,進(jìn)而得出答案.【解析】【解答】解:∵四邊形ABCD是平行四邊形;

∴AD∥BC;AB∥CD;

∴△BEC∽△GEA;△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF;

∴△GAB∽△BCF;

還有△ABC≌△CDA(是特殊相似);

∴共有6對.

故選:B.5、A【分析】【分析】設(shè)該隊負(fù)的場數(shù)是x場,則平了(x+7)場,勝了(26-x-x-7)場,根據(jù)題意列方程3(26-x-x-7)+x+7=34,求解再代入即可求得勝、平、負(fù)的場數(shù).【解析】【解答】解:設(shè)該隊負(fù)的場數(shù)是x場;則平了(x+7)場,勝了(26-x-x-7)場.

根據(jù)題意得:3(26-x-x-7)+x+7=34

解可得:x=6

則平了x+7=13;勝了26-x-x-7=7;

故選A.6、C【分析】【分析】本題考查了總體的概念,要考查對象的全體叫做總體,根據(jù)概念就可以解答.【解析】【解答】解:總體是指考查的對象的全體.故選C.7、D【分析】【解析】解:根據(jù)統(tǒng)計表中;各組頻數(shù)之和為樣本容量;

可得第六組的頻數(shù)為100-11-14-12-13-13-12-10=15;

故選D【解析】【答案】D二、填空題(共9題,共18分)8、略

【分析】【分析】先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠OAB的度數(shù),由圓周角定理可知∠AOB=90°,故可得出∠ABO的度數(shù),根據(jù)直角三角形的性質(zhì)即可得出AB的長,進(jìn)而得出結(jié)論.【解析】【解答】解:∵四邊形ABMO是圓內(nèi)接四邊形;∠BMO=120°;

∴∠BAO=60°;

∵AB是⊙C的直徑;

∴∠AOB=90°;

∴∠ABO=90°-∠BAO=90°-60°=30°;

∵點A的坐標(biāo)為(0;3);

∴OA=3;

∴AB=2OA=6;

∴⊙C的半徑長==3.

故答案是:3.9、略

【分析】

∵PA=3;OP=PB=2;

∴AB=3+2=5;

過O作OD⊥AB于點D;連接OB;

則BD=AB=×5=

∵PB=2;

∴PD=-2=

在Rt△ODP中,OD===

在Rt△OBD中,OB===.

故答案為:.

【解析】【答案】先求出AB的長;過O作OD⊥AB于點D,連接OB,由垂徑定可求出BD的長,進(jìn)而得出PD的長,再在直角△ODP中利用勾股定理即可求出OD的長.

10、略

【分析】

∵r=5cm;l=15cm;

∴S側(cè)=πrl=75πcm2.

故答案為:75π

【解析】【答案】利用圓錐的側(cè)面積公式計算;即可得到結(jié)果.

11、略

【分析】

根據(jù)圖形觀察;兩個圓之間有的有兩個交點,有的沒有交點,因此五個圓中任意兩個圓之間的位置關(guān)系是外離和相交.

【解析】【答案】此題要求兩個圓的位置關(guān)系;根據(jù)圖形觀察兩個圓之間的交點個數(shù),一個交點兩圓相切,兩個交點兩圓相交,沒有交點兩圓相離.

12、略

【分析】

tan1°?tan45°?tan89°

=tan1°?tan89°?tan45°

=1×1=1.

【解析】【答案】根據(jù)互余兩角的正切之積為1和特殊角度三角函數(shù)值計算.

13、略

【分析】解:這組數(shù)據(jù)的平均數(shù)是:(8+5+2+5+6+4)隆脗6=5

則方差S2=16[(8鈭?5)2+(2鈭?5)2+(6鈭?5)2+(4鈭?5)2]=103

故答案為:103

先求出這組數(shù)據(jù)的平均數(shù);再根據(jù)方差的計算公式計算即可.

本題考查了方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.【解析】103

14、略

【分析】【分析】先求出球的總個數(shù),再根據(jù)概率公式列出不等式,求解即可.【解析】【解答】解:根據(jù)題意得:>;

解得:n<2;

∵n為正整數(shù);

∴n=1;

故答案為:1.15、略

【分析】【分析】要證△ABF≌△ECD,已知兩邊相等,則可以添加一對邊相等或一組角相等即可.【解析】【解答】解:添加AE=AF或AB∥EC或DC∥BF后可分別根據(jù)SSS;SAS、ASA判定△ABF≌△ECD.

故填A(yù)E=AF或AB∥EC或DC∥BF等.16、略

【分析】

∵x1,x2是方程x2+3x-4=0的兩個根。

∴x1+x2=-=-3,x1x2==-4;

∵x21+x22=x21+x22+2x1x2-2x1x2

=(x1+x2)2-2x1x2

=(-3)2-2×(-4)

=9+8

=17.

故答案為:17.

【解析】【答案】利用根與系數(shù)的關(guān)系得出x1+x2=-=-3,x1x2==-4,再將x21+x22配方;再代入求出即可.

三、判斷題(共9題,共18分)17、×【分析】【分析】先利用三角形內(nèi)角和計算出兩個角分別為60°和72°的三角形第三個內(nèi)角為48°,于是根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可判斷兩個角分別為60°和72°的三角形與有兩個角分別為60°和48°的三角形相似.【解析】【解答】解:一個三角形的兩個角分別為60°和72°;則第三個角為48°,而另一個三角形有兩個角分別為60°和48°,所以這兩個三角形相似.

故答案為×.18、√【分析】【分析】根據(jù)三角形的內(nèi)切圓與內(nèi)心的作法容易得出結(jié)論.【解析】【解答】解:∵三角形的三條角平分線交于一點;這個點即為三角形的內(nèi)心,過這個點作一邊的垂線段,以這個點為圓心,垂線段長為半徑的圓即三角形的內(nèi)切圓;

∴三角形一定有內(nèi)切圓;

故答案為:√.19、√【分析】【分析】勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.【解析】【解答】解:∵在Rt△ABC中;∠B=90°;

∴a2+c2=b2.

故答案為:√.20、√【分析】【分析】根據(jù)三角形的分類:有一個角是鈍角的三角形,叫鈍角三角形;進(jìn)行解答即可.【解析】【解答】解:根據(jù)鈍角三角形的定義可知:有一個角是鈍角的三角形是鈍角三角形;

所以“有一個角是鈍角的三角形是鈍角三角形”的說法是正確的.

故答案為:√.21、√【分析】【分析】根據(jù)抽樣調(diào)查和全面調(diào)查的區(qū)別以及普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【解析】【解答】解:了解某漁場中青魚的平均重量;采用抽查的方式是正確的;

故答案為:√.22、×【分析】【分析】根據(jù)二次根式的除法,可化簡二次根式.【解析】【解答】解:==;

故錯誤;

故答案為:×.23、×【分析】【分析】根據(jù)三角形的高的概念,通過具體作高,發(fā)現(xiàn):銳角三角形的三條高都在三角形的內(nèi)部;直角三角形有兩條高即三角形的兩條直角邊,一條在內(nèi)部;鈍角三角形有兩條高在三角形的外部,一條在內(nèi)部.【解析】【解答】解;鈍角三角形有三條高;一條高在三角形內(nèi)部,另外兩條高在三角形外部;

銳角三角形有三條高;高都在三角形內(nèi)部,銳角三角形三條高的交點一定在三角形內(nèi)部;

直角三角形有兩條高即三角形的兩條直角邊;一條在內(nèi)部,三條高的交點在頂點上;

所以三角形三條高的交點不在三角形內(nèi)就在三角形外錯誤;

故答案為:×24、√【分析】【分析】在一對具有相反意義的量中,其中一個為正,則另一個就用負(fù)表示.【解析】【解答】解:“正”和“負(fù)”相對;

收入-2000元即表示支出2000元.

故答案為:√.25、×【分析】【解析】試題分析:根據(jù)三角形的性質(zhì)結(jié)合角平分線的性質(zhì)即可判斷.在同一平面內(nèi),到三角形三邊所在直線距離相等的點可能是三角形三條內(nèi)角平分線的交點,也可能是任兩個外角平分線的交點,不止一個,故本題錯誤.考點:角平分線的性質(zhì)【解析】【答案】錯四、解答題(共2題,共16分)26、略

【分析】

延長過點A的水平線交CD于點E

則有AE⊥CD;四邊形ABDE是矩形,AE=BD=36

∵∠CAE=45°∴△AEC是等腰直角三角形∴CE=AE=36

在Rt△AED中,tan∠EAD=

∴ED=36×tan30°=

∴CD=CE+ED=36+12

答:樓CD的高是(36+12)米.

【解析】【答案】在題中兩個直角三角形中;知道已知角和其鄰邊,只需根據(jù)正切值求出對邊后相加即可.

27、略

【分析】(1)

解:當(dāng)BE=0

時,即點B

和點E

重合,故可知鈻?PEC

是等腰三角形;

當(dāng)BE=2

時,即E

是BC

的中點,可得鈻?PEC

是等腰三角形。

由題干條件知PC=22

當(dāng)CP=CE

時鈻?PEC

是等腰三角形,BE=4鈭?22

當(dāng)E

在BC

的延長線上時,CE=CP鈻?PEC

是等腰三角形,BE=4+22

故答案為02

或4隆脌22.

(2)

證明:連接BP

隆脽AB=BC

且隆脧ABC=90鈭?

隆脿隆脧C=45鈭?

又隆脽P

是AC

中點;

隆脿BP隆脥ACBP=PC

且隆脧ABP=隆脧CBP=45鈭?

隆脿隆脧CPE+隆脧EPB=90鈭?

隆脽DP隆脥PE

隆脿隆脧BPD+隆脧EPB=90鈭?

隆脿隆脧BPD=隆脧CPE

在鈻?DPB

和鈻?EPC

中。

隆脽{隆脧BPD=隆脧CPEBP=CP隆脧ABP=隆脧C

隆脿鈻?DPB

≌鈻?EPC

隆脿PD=PE

(3)

解:MDME

的數(shù)量關(guān)系是:MDME=mn

理由如下:

過M

分別作ABBC

的垂線,垂足分別為GH

由作圖知,隆脧MGA=隆脧MGB=隆脧MHB=隆脧MHE=90鈭?

又隆脽隆脧B=90鈭?

隆脿隆脧GMH=90鈭?

隆脿隆脧GMD+隆脧DMH=90鈭?

隆脽隆脧DMH+隆脧HME=90鈭?

隆脿隆脧GMD=隆脧HME

隆脿鈻?MGD

∽鈻?MHE

隆脿GMHM=MDME壟脵

隆脽AMMC=mn

隆脿AMAC=mm+n

隆脽隆脧MGA=隆脧B=90鈭?

隆脿GM//BC

隆脿GMBC=AMAC=mm+n

即GM=BC鈰?mm+n壟脷

同理HM=AB鈰?nm+n

隆脽AB=BC

隆脿HM=BC鈰?nm+n壟脹

壟脷壟脹

代入壟脵

得MDME=mn

(1)

根據(jù)鈻?PEC

是等腰三角形;分類進(jìn)行討論即可;

(2)

連接BP

首先根據(jù)題干條件證明出隆脧BPD=隆脧CPE

然后證明鈻?DPB

≌鈻?EPC

于是證明出PD=PE

(3)

過M

分別作ABBC

的垂線,垂足分別為GH

首先根據(jù)角之間的關(guān)系求出隆脧GMD=隆脧HME

進(jìn)而證明出鈻?MGD

∽鈻?MHE

根據(jù)相似三角形對應(yīng)邊成比例,得到GMHM=MDME

再求出GMHM

關(guān)于mn

的表達(dá)式,三式結(jié)合求出MDME

之間的比例關(guān)系.

本題主要考查相似綜合題得知識點,解答本題的關(guān)鍵是熟練運用相似三角形的判定與性質(zhì)定理,此題難度較大.【解析】02

或4隆脌22

五、其他(共1題,共6分)28、略

【分析】【分析】(1)由于超過部分要按每千瓦時元收費,所以超過部分電費(90-A)?元;化簡即可;

(2)依題意,得:(80-A)?=15,解方程即可.此外從表格中知道沒有超過45時,電費還是10元,由此可以舍去不符合題意的結(jié)果.【解析】【解答】解:(1)超過部分電費=(90-A)?=-A2+A;

答:超過部分電費為(-A2+A)元.

(2)依題意得(80-A)?=15;

解之得,A1=30,A2=50.

∵A應(yīng)大于45千瓦時;

A=30千瓦時舍去;

答:電廠規(guī)定的A值為50千瓦時.六、綜合題(共2題,共18分)29、略

【分析】【分析】(1)利用△ACD≌△BCE證明AD=BE;

(2)當(dāng)△CDE旋轉(zhuǎn)到BC與C到DE到高在同一條直線上時;△BDE面積最大,求出高,再利用面積公式求出△BDE的面積最大值.

(3)①由△CDE∽△CAB,得出比例式,再證出△ACD'∽△BCE'得出的值;再利用∠CBE'=∠CAF求出∠BFA的度數(shù);

②先確定當(dāng)當(dāng)D'與點O重合時,△AOC的面積最大,求出△AOC的高,利用三角形面積公式求出△AOC面積的最大值.【解析】【解答】解:(1)猜想:AD=BE;

證明:∵△ABC和△CDE都是等邊三角形;

∴AC=BC;DC=EC,∠ACB=∠ECD=60°;

∴∠ACB+∠BCD=∠ECD∠BCD;即∠ACD=BCE;

在△ACD和△BCE中;

∴△ACD≌△BCE(SAS);

∴AD=BE;

(2)如下圖1所示;當(dāng)△CDE旋轉(zhuǎn)到BC與C到DE到高在同一條直線上時,△BDE面積最大;

此時,DE邊上的高為

∴△BDE面積最大值為.

(3)①如圖3;

∵DE∥AB;

∴△CDE∽△CAB;

∵△CD'E'由△CDE繞C點旋轉(zhuǎn)得到。

∴CE'=CE;CD'=CD,∠DCE=∠D'CE'=60°

∴,則

又∵∠DCE+∠BCD'=∠D'CE'+∠BCD';即∠ACD'=∠BCE'

∴△ACD'∽△BCE'

由△ACD'∽△BCE'得∠CBE'=∠CAF

∴∠BFA=180°-(∠BAF+∠ABF)=180°-(∠BAF+∠ABC+∠FAC)=180°-120°=60°

②如圖4所示;當(dāng)D'與點O重合時,△AOC的面積最大。

過點O作OG⊥AC于G;

∴△AOC的面積的最大值為.30、略

【分析】【分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論