




已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第4課時基本不等式 一 考綱點擊1 了解基本不等式的證明過程 2 會用基本不等式解決簡單的最大 小 值問題 二 命題趨勢1 從考查內(nèi)容看 主要考查利用不等式求最值 且常與函數(shù) 數(shù)列 解析幾何等結(jié)合在一起考查 2 從考查形式看 主要以選擇題 填空題的形式出現(xiàn) 考查最值的求法 也可滲透在解答題中 難度一般不大 屬中低檔題 a 0 b 0 a b 2ab 2 x y 小 x y 大 1 在應(yīng)用基本不等式求最值時 要把握不等式成立的三個條件 就是 一正 各項均為正 二定 積或和為定值 三相等 等號能否取得 若忽略了某個條件 就會出現(xiàn)錯誤 2 基本不等式的幾種變形公式及應(yīng)用 1 對于基本不等式 不僅要記住原始形式 而且還要掌握它的幾種常見的變形形式及公式的逆運用等 如 歸納提升 利用基本不等式求最值需注意的問題 1 各數(shù) 或式 均為正 2 和或積為定值 3 判斷等號能否成立 即一正 二定 三相等 這三個條件缺一不可 4 當(dāng)多次使用基本不等式時 一定要注意每次能否保證等號成立 并且要注意多次取等號的條件是否一致 即多次等號能否同時成立 5 為了創(chuàng)造使用基本不等式的條件 常需要對求值的式子進(jìn)行恒等變形 運用基本不等式求最值的關(guān)鍵在于湊配 和 與 積 并且在湊配過程中注意等號成立的條件 歸納提升 利用基本不等式證明不等式是綜合法證明不等式的一種情況 證明思路是從已證不等式和問題的已知條件出發(fā) 借助不等式的性質(zhì)和有關(guān)定理 經(jīng)過逐步的邏輯推理最后轉(zhuǎn)化為需證問題 針對訓(xùn)練3 2013 四川 設(shè)p1 p2 pn為平面 內(nèi)的n個點 在平面 內(nèi)的所有點中 若點p到點p1 p2 pn的距離之和最小 則稱點p為點p1 p2 pn的一個 中位點 例如 線段ab上的任意點都是端點a b的中位點 現(xiàn)有下列命題 若三個點a b c共線 c在線段ab上 則c是a b c的中位點 直角三角形斜邊的中點是該直角三角形三個頂點的中位點 若四個點a b c d共線 則它們的中位點存在且唯一 梯形對角線的交點是該梯形四個頂點的唯一中位點 其中的真命題是 寫出所有真命題的序號 p是平面內(nèi)任一點 點o為p在直線ab上的射影 pa pb pc pd oa ob oc od 2 bc cd ab 由p的任意性知 只要o點落在線段bc上即可 錯 對 設(shè)梯形abcd的對角線ac bd相交于o點 由于 pa pc ac pb pd bd pa pc pb pd ac bd ao ob oc od 即o為該梯形四個頂點的唯一的中位點 答案 方法探究 拆 拼 湊的典范 本題求和式的最小值 故可選用基本不等式 為了使積為定值 故需對原式進(jìn)行配湊 關(guān)鍵點在于使目標(biāo)出現(xiàn)定積 同時要注意項必須為正數(shù) 故需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電子產(chǎn)品購銷合同書范文
- 2025年度企業(yè)間借款合同范本
- 個人借款還款合同書范例
- 課堂教學(xué)培訓(xùn):技術(shù)賦能與智慧引領(lǐng)
- 初任幼兒園教師情感勞動困境與紓解策略探析
- 人教部編版二年級上冊我是什么第1課時教案設(shè)計
- 涂料行業(yè)發(fā)展趨勢與市場機(jī)會深度解析
- 婚禮策劃流程圖
- 10kV配電項目實施方案優(yōu)化與實踐
- 急救管理質(zhì)控組工作計劃
- 市政管網(wǎng)危大工程專項方案
- 2024年新鄉(xiāng)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案解析
- 銀行業(yè)審計培訓(xùn)課件
- 2024年新改版蘇教版六年級下冊科學(xué)全冊復(fù)習(xí)資料
- 物業(yè)電梯安全檢查報告
- (新版)安全閥安裝、檢修及校驗培訓(xùn)課件
- 殘疾消防培訓(xùn)課件內(nèi)容
- 個人專門制作的風(fēng)機(jī)功率計算公式及方法
- 廣州有限責(zé)任公司章程范本
- 知識產(chǎn)權(quán)與人工智能
- 《心房顫動診斷和治療中國指南2023》解讀
評論
0/150
提交評論