外文翻譯--基于ADAMS的麥弗遜懸架運動學仿真分析_第1頁
外文翻譯--基于ADAMS的麥弗遜懸架運動學仿真分析_第2頁
外文翻譯--基于ADAMS的麥弗遜懸架運動學仿真分析_第3頁
外文翻譯--基于ADAMS的麥弗遜懸架運動學仿真分析_第4頁
外文翻譯--基于ADAMS的麥弗遜懸架運動學仿真分析_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江工程學院本科生畢業(yè)設計 1 附錄 A Performance Kinematics Simulation of Macpherson Suspension Based on ADAMS WANG Yuefang, WANG Zhenhua (Department of Vehicle & Power Engineering, College of Mechatronics Engineering,North University of China, Taiyuan, Shanxi, 030051, China) Phone:+863513920300 Fax:+863513922364 E-Mail: Abstract: The paper discusses a basic simulation way on founding a front suspension simulation model. It applies on method of multi-body dynamics and uses virtual prototyping technology software ADAMS building up Macpherson suspension entity mold. It analyzes the relations between a Macpherson suspension system and wheel alignment characteristic through kinematics simulation, and obtains the changing trend of the wheel alignment parameters. This provides theoretical foundation with further optimization design. Key words: Macpherson Suspension; Kinematics Simulation; ADAMS 1. Introduction Suspension system is a key part for cars, and has decisive effect on car drivability, stability, and comfortability. Because of its characteristics of simple structure, low cost and space economy, Macpherson suspension has become the most popular independent suspension since its emergence. Hence, the kinematics analysis of Macpherson suspension has great significance. ADAMS (Automatic Dynamic Analysis of Mechanical System) is a simulation software of mechanical system used most widely in the world. Based on the ADAMS virtual model technology, the automobile suspension is regard as a multi-body system which parts connect and motion each other. With the help of ADAMS/View, this paper established multi-body dynamics model of Macpherson front suspension of some car which is increasingly wide used in modern car, and the effects of suspension parameters when wheel travel or turn were studied. The ADAMS entity numeric suspension kinetics simulation provides an efficient and updated tool for developing suspension system. 2. Simulation model 2.1 Front suspension subsystem simulation model Firstly, three-dimensional model of Macpherson suspension system in the Pro/E 黑龍江工程學院本科生畢業(yè)設計 2 according to acquired geometric parameters is established. Secondly, ADAMS/CAR model is imported by utilizing MECHANISM/Pro, and the geometric characteristic parameters can be obtained from Pro/E three-dimensional documents. The founding model time is short and very accurate. Fig.1 is the model of Macpherson suspension subsystem. Table 1 is the constraints relationship between rigid bodies of front Macpherson suspension. Fig.1 Front Macpherson suspension subsystem 1-lower triangle swinging arm 2-universal joint3-subsidiary car frame 4-upper suspension support 5-tie rod 6-wheel rim 7-driving axle 8-driving joint axle9-shock absorber 10-rubber liner 2.2 Steering subsystem simulation model Gear and rack steering system model adopts partial coordinate system. The base point lies in center of circle of steering wheel. The direction of x, y, z axle is radial, tangential, normal of steering wheel separately. Figure 2 is the model which contains six rigid bodies that are rack, rack shell, gear axle, middle axle, steering limb and steering wheel axle. Three assembled bodies connect tie rod, subsidiary car frame and car body. Fig.2 is the model of steering system. Table 2 is the constraints relationship between rigid bodies of steering subsystem. 黑龍江工程學院本科生畢業(yè)設計 3 Fig.2 The model of steering subsystem 2.3 Simulation model of front Macpherson suspension system Front Macpherson suspension subsystem and steering subsystem models from ADAMS/CAR that have been established are invoked. Then, combined parameters are input. So far , front Macpherson suspension model is finished. Figure 3 is the kinematics simulation model of Macpherson suspension. Fig.3 Suspension simulation model 3. Kinematics simulation analyses 3.1 Data process Initial simulation conditions uniform actual parameters of the researched car. Utilizing ADAMS/CAR model simulates bilateral parallel travel and opposite direction travel. So, the alteration of camber angle, kingpin inclination angle, caster angle and toe angle are analyzed. The structure of Macpherson suspensions left and right is symmetrical, it is totally the same to alignment parameters, only the left wheel alignment parameters are analyzed3. The range that this car beats is 150mm -130mm actually. Under two kinds of operating modes, the comparison of changed curves on wheel alignment parameters are shown in Fig. 4-7. 黑龍江工程學院本科生畢業(yè)設計 4 Fig.4 Camber angle vs wheel travel Fig.5 Caster angle vs wheel travel Fig.6 Toe angle vs wheel travel Fig.7 Kingpin inclination angle vs wheel travel 3.2 Discussion and analysis (1)In the process of wheel parallel travel and opposite travel, the alignment parameters change with the change of wheel vertical shift. In Fig.4, camber angle reduces firstly and increases secondly. The changing amount is 0.9786. The change of camber angle contains two parts: the change of camber angle that comes from car body roll and the changing amount of camber angle that relates car body travel. In Fig.5, the change of caster angle with the wheel vertical shift rise sharply. (2)Under two kinds of operating modes of wheel parallel travel and opposite travel, Fig.6 is shown , the change of toe angle is obviously. Under the operating modes of opposite travel, toe angle increases from -0.8029 to 1.6844. Its change 黑龍江工程學院本科生畢業(yè)設計 5 affects car drivability and stability. (3)As we can see in Fig.4 and Fig.7, when the wheel travels downward, the change range that is from 0 -130mm, the changing trend of kingpin inclination angle is opposite to camber angle. This could aggravate the wheel wear. But, according to the theoretical relationship and adjust, proper and acceptedcorresponding relation can be obtained. 4. Conclusion This paper discusses kinematics simulation analysis on founding a front Macpherson suspension simulation model that uses technology software ADAMS. Three conclusions are as follows: (1)ADAMS/CAR model is imported from Pro/E by utilizing MECHANISM/Pro, but model can also be imported to SolidWork or UG in STEP format, then, imported to ADAMS in ParaSolid format. (2)The original wheel orientation parameters of Macpherson suspension meet the require. These indicate that the model is rational. The wheel wear range is accepted. (3)The change trend of the wheel alignment parameters is gained through kinematics simulation analysis of Macpherson suspension. Wheel alignment characteristic has effect on full-vehicle capability through suspension and Camber angle. On contrary, full-vehicle motion characteristic affects wheel alignment characteristic through suspension. In a word, virtual prototyping technology software ADAMS can greatly predigest design program and shorten exploitive cycle, greatly reduce exploitive expense and cost, clearly improve product quality and system capability to get optimized and innovated product. 黑龍江工程學院本科生畢業(yè)設計 6 附錄 B 基于 ADAMS 的麥弗遜懸架運動學仿真分析 王月芳,王振華 ( 中北大學車輛與動力工程系 , 山西太原 030051) 摘要 : 本文討論了一種建立麥弗遜前 懸架模型的基本仿真分析方法。它運用多體動力學的理論并在虛擬樣機技 術軟件 ADAMS 上建立麥弗遜懸架實體模型。通過運動學仿真,分析了麥弗遜懸架系統(tǒng)與車輪定位參數(shù)特性之間的關系,得到車輪定位參數(shù)的變化趨勢。這些 為進一步優(yōu)化設計提供了理論依 據(jù)。 關鍵詞 : 麥弗遜式懸架 ;運動仿真; ADAMS 1. 前言 懸架系統(tǒng)是汽車的關鍵部件,對汽車的動力性,操縱穩(wěn)定性,舒適性有決定性影響。由于它的結構簡單,成本低,節(jié)省空間的特點,麥弗遜懸架從它誕生以后就成為了應用最廣泛的獨立懸架類型。因此對麥弗遜懸架進行運動學分析具有重要意義。 ADAMS (Automatic Dynamic Analysis of Mechanical System)是世界上應用最廣泛的機械系統(tǒng)仿真軟件?;?ADAMS虛擬樣機技術,汽車懸架可以看作是各部件相互連接和運動的多體系統(tǒng)。借助于 ADAMS/View,本文建立了某轎車的麥弗遜前懸架( 在現(xiàn)代轎車上應用越來越廣泛)的多體動力學模型,并研究了當車輪跳動,轉動時,懸架結構參數(shù)產(chǎn)生的影響。在 ADAMS上進行懸架動力學仿真為懸架技術的發(fā)展提供了有效而且及時的方法。 2. 仿真模型 前懸架系統(tǒng)建模 首先,根據(jù)必要的幾何參數(shù),在 Pro/E中建立麥弗遜懸架的三維模型。其次,通過MECHANISM/Pro, ADAMS/CAR模型被導入,而且模型的幾何參數(shù)通過 Pro/E三維模型文件也能得到。建模花費時間短,并且精確。圖 1所示的即為麥弗遜懸架子系統(tǒng)。表 1列出了懸架各部件間的連接關系。 圖 1:麥弗遜前懸架 黑龍江工程學院本科生畢業(yè)設計 7 1-下 三角擺臂; 2-轉向節(jié) 3-副車架; 4-懸架上支架 5-轉向橫拉桿 6-輪轂; 7-傳動軸 8-傳動軸節(jié) 9-減震器; 10-橡膠襯套 轉向系統(tǒng)模型 齒輪齒條式采用局部坐標系 ,坐標原點位于轉向盤圓心處 ,x、 y、 z軸的方向分別為轉向盤的徑向、切向、法向。模型如圖 2,包括 6個剛體 ,分別為齒條、齒條殼體、齒輪軸、中間軸、轉向管柱和轉向盤軸。 3個裝配剛體 ,分別用來連接轉向橫拉桿、副車架和車身。剛體之間的相互約束關系如表 2。 Fig.2 轉向系統(tǒng)模型 2.3 建立前懸架仿真平臺模型 在 ADAMS/CAR 中調(diào)用上面建立好的前懸架子系統(tǒng)和轉向子系統(tǒng) ,輸入相關參數(shù) ,完成麥弗遜式懸架的建模。懸架運動學仿真模型如圖 3所示。 黑龍江工程學院本科生畢業(yè)設計 8 圖 3: 懸架運動學仿真平臺模型 3. 運動學仿真分析 3.1 數(shù)據(jù)處理 仿真初始條件和此車實況參數(shù)保持一致 ,利用 ADAMS/CAR模塊進行雙側平行跳動和反向跳動仿真 ,分析車

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論