版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精品試卷人教版八年級下冊期中考試數(shù) 學(xué) 試 卷一、選擇題(本大題共10小題,共30分)1. 若x,y都是實數(shù),且,則xy的值是( )a. 0b. c. d. 不能確定2. 下列各數(shù)中,化為最簡二次根式后能與合并的是()a. b. c. d. 3. 在abc中,ab=10,ac=2,bc邊上的高ad=6,則另一邊bc等于( )a. 10b. 8c. 6或10d. 8或104. 我國是最早了解勾股定理的國家之一.下面四幅圖中,不能用來證明勾股定理的是( )a b. c. d. 5. 已知a、b、c為abc的三邊,且滿足a2c2b2c2a4b4,則abc是()a. 直角三角形b. 等腰三角形c. 等
2、腰三角形或直角三角形d. 等腰直角三角形6. 2019年10月1日,中華人民共和國70年華誕之際,王梓涵和學(xué)校國旗護衛(wèi)隊的其他同學(xué)們趕到學(xué)校舉行了簡樸而降重的升旗儀式傾聽著雄壯的國歌聲,目送著五星紅旗級緩升起,不禁心潮澎湃,愛國之情油然而生愛動腦筋的王梓涵設(shè)計了一個方案來測量學(xué)校旗桿的高度將升旗的繩子拉直到末端剛好接觸地面,測得此時繩子末端距旗桿底端2米,然后將繩子末端拉直到距離旗桿5m處,測得此時繩子末端距離地面高度為1m,最后根據(jù)剛剛學(xué)習(xí)的勾股定理就能算出旗桿的高度為()a. 10mb. 11mc. 12md. 13m7. 如圖,在abc中,ab=3,ac=4,bc=5,p為邊bc上一動點
3、,peab于e,pfac于f,m為ef中點,則am的最小值為( )a. b. c. d. 8. 如圖所示,abcd的對角線ac,bd相交于點o,abcd的周長() a. 11b. 13c. 16d. 229. 如圖,在矩形abcd中,ac、bd相交于點o,ae平分bad交bc于e,若eao=15,則boe的度數(shù)為( )a. 85b. 80c. 75d. 7010. 如圖,平行四邊形abcd對角線ac與bd相交于點o,aebc于e,ab,ac2,bd4,則ae的長為()a. b. c. d. 二、填空題(本大題共5小題,共15分)11. 使式子有意義的x的取值范圍是_12. 如圖,四邊形abcd
4、中,e,f,g,h分別是邊ab、bc、cd、da的中點若四邊形efgh為菱形,則對角線ac、bd應(yīng)滿足條件_13. 如圖,延長矩形abcd的邊bc至點e,使cebd,連結(jié)ae,如果adb30,則e_度14. 如圖,某會展中心在會展期間準備將高5m,長13m,寬2m的樓道上鋪地毯,已知地毯每平方米18元,請你幫助計算一下,鋪完這個樓道至少需要_元錢15. 如圖,在平行四邊形abcd中,p是cd邊上一點,且ap和bp分別平分dab和cba,若ad=5,ap=8,則apb的周長是_三、計算題(本大題共2小題,共15分)16. 計算:(1)()();(2)()()+()217. 已知a,求的值四、解答
5、題(本大題共6小題,共60分)18. 在數(shù)軸上表示a、b、c三數(shù)點的位置如下圖所示,化簡:|c|-|a-b|19. 如圖,四邊形abcd中,ab=20,bc=15,cd=7,ad=24,b=90(1)判斷d是否是直角,并說明理由(2)求四邊形abcd的面積.20. 如圖,在abcd中,aebd,cfbd,垂足分別為e、f求證:(1)aecf;(2)四邊形aecf是平行四邊形21. 如圖,ad是等腰abc底邊bc上的高.點o是ac中點,延長do到e,使,連接ae,ce.(1)求證:四邊形adce是矩形;(2)若,求四邊形adce的面積.22. 如圖,在菱形abcd中,ab2,dab60,點e是a
6、d邊中點,點m是ab邊上一動點(不與點a重合),延長me交射線cd于點n,連接md、an(1)求證:四邊形amdn平行四邊形;(2)在點m移動過程中:當(dāng)四邊形amdn成矩形時,求此時am的長;當(dāng)四邊形amdn成菱形時,求此時am的長23. 如圖,在矩形abcd中,e是ad上一點,pq垂直平分be,分別交ad、be、bc于點p、o、q,連接bp、eq(1)求證:四邊形bpeq是菱形;(2)若ab=6,f為ab中點,of+ob=9,求pq的長答案與解析一、選擇題(本大題共10小題,共30分)1. 若x,y都是實數(shù),且,則xy的值是( )a. 0b. c. d. 不能確定【答案】c【解析】【分析】先
7、根據(jù)二次根式有意義的條件:被開方數(shù)0,求出x的值,然后代入求出y的值,最后計算xy即可.【詳解】解:根據(jù)二次根式有意義的條件可得:解得:將代入中得:解得:故選c【點睛】此題考查的是二次根式有意義的條件,掌握二次根式有意義的條件:被開方數(shù)0是解決此題的關(guān)鍵2. 下列各數(shù)中,化為最簡二次根式后能與合并的是()a. b. c. d. 【答案】b【解析】【分析】利用二次根式的性質(zhì)逐一化簡各選項中的二次根式,得到與是同類二次根式的選項,從而可得答案【詳解】解:因為3,2,所以能與合并的是,故選:b【點睛】本題考查的是二次根式的化簡,以及同類二次根式的定義,掌握以上知識是解題的關(guān)鍵3. 在abc中,ab=
8、10,ac=2,bc邊上的高ad=6,則另一邊bc等于( )a. 10b. 8c. 6或10d. 8或10【答案】c【解析】【分析】【詳解】分兩種情況:在圖中,由勾股定理,得;bcbdcd8210.在圖中,由勾股定理,得;bcbdcd826.故選c.4. 我國是最早了解勾股定理的國家之一.下面四幅圖中,不能用來證明勾股定理的是( )a. b. c. d. 【答案】c【解析】【分析】根據(jù)a、b、c、d各圖形結(jié)合勾股定理一一判斷可得答案.【詳解】解:a、有三個直角三角形, 其面積分別為ab,ab和,還可以理解為一個直角梯形,其面積為,由圖形可知:=ab+ab+, 整理得:(a+b)=2ab+c,a
9、+b+2ab=2ab+ c, a+b= c能證明勾股定理;b、中間正方形的面積= c,中間正方形的面積=(a+b)-4ab=a+b,a+b= c,能證明勾股定理;c、不能利用圖形面積證明勾股定理, 它是對完全平方公式的說明.d、大正方形的面積= c,大正方形的面積=(b-a)+4ab = a+b,a+b= c,能證明勾股定理;故選c.【點睛】本題主要考查勾股定理的證明,解題的關(guān)鍵是利用構(gòu)圖法來證明勾股定理.5. 已知a、b、c為abc的三邊,且滿足a2c2b2c2a4b4,則abc是()a. 直角三角形b. 等腰三角形c. 等腰三角形或直角三角形d. 等腰直角三角形【答案】c【解析】【分析】移
10、項并分解因式,然后解方程求出a、b、c的關(guān)系,再確定出abc的形狀即可得解【詳解】移項得,a2c2b2c2a4+b4=0,c2(a2b2)(a2+b2)(a2b2)=0,(a2b2)(c2a2b2)=0,所以,a2b2=0或c2a2b2=0,即a=b或a2+b2=c2,因此,abc等腰三角形或直角三角形故選:c【點睛】本題考查了因式分解的應(yīng)用以及勾股定理的逆定理的應(yīng)用,提取公因式并利用平方差公式分解因式得到a、b、c的關(guān)系式是解題的關(guān)鍵6. 2019年10月1日,中華人民共和國70年華誕之際,王梓涵和學(xué)校國旗護衛(wèi)隊的其他同學(xué)們趕到學(xué)校舉行了簡樸而降重的升旗儀式傾聽著雄壯的國歌聲,目送著五星紅旗
11、級緩升起,不禁心潮澎湃,愛國之情油然而生愛動腦筋的王梓涵設(shè)計了一個方案來測量學(xué)校旗桿的高度將升旗的繩子拉直到末端剛好接觸地面,測得此時繩子末端距旗桿底端2米,然后將繩子末端拉直到距離旗桿5m處,測得此時繩子末端距離地面高度為1m,最后根據(jù)剛剛學(xué)習(xí)的勾股定理就能算出旗桿的高度為()a. 10mb. 11mc. 12md. 13m【答案】b【解析】【分析】根據(jù)題意畫出示意圖,設(shè)旗桿高度為xm,可得acadxm,ab(x1)m,bc5m,在rtabc中利用勾股定理可求出x【詳解】設(shè)旗桿高度為xm,可得acadxm,ab(x1)m,bc5m,根據(jù)勾股定理得,繩長的平方x2+22,右圖,根據(jù)勾股定理得,
12、繩長的平方(x1)2+52,x2+22(x1)2+52,解得x11,故選:b【點睛】此題考查勾股定理,題中有兩種拉繩子的方式,故可以構(gòu)建兩個直角三角形,形狀不同大小不同但都是直角三角形且繩子的長度是不變的,因此根據(jù)繩子建立勾股定理的等式,由此解答問題.7. 如圖,在abc中,ab=3,ac=4,bc=5,p為邊bc上一動點,peab于e,pfac于f,m為ef中點,則am的最小值為( )a. b. c. d. 【答案】a【解析】【分析】先根據(jù)矩形的判定得出四邊形是矩形,再根據(jù)矩形的性質(zhì)得出,互相平分且相等,再根據(jù)垂線段最短可以得出當(dāng)時,的值最小,即的值最小,根據(jù)面積關(guān)系建立等式求解即可【詳解】
13、解:,四邊形是矩形,互相平分,且,又為與的交點,當(dāng)?shù)闹禃r,的值就最小,而當(dāng)時,有最小值,即此時有最小值,故選:【點睛】本題考查了矩形的性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,垂線段最短的性質(zhì)的運用,找出取最小值時圖形的特點是解題關(guān)鍵8. 如圖所示,abcd的對角線ac,bd相交于點o,abcd的周長() a. 11b. 13c. 16d. 22【答案】d【解析】【分析】根據(jù)平行四邊形性質(zhì)可得oe是三角形abd的中位線,可進一步求解.【詳解】因為abcd的對角線ac,bd相交于點o,所以oe是三角形abd的中位線,所以ad=2oe=6所以abcd的周長=2(ab+ad)=22故選d【
14、點睛】本題考查了平行四邊形性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.9. 如圖,在矩形abcd中,ac、bd相交于點o,ae平分bad交bc于e,若eao=15,則boe的度數(shù)為( )a. 85b. 80c. 75d. 70【答案】c【解析】試題分析:由矩形的性質(zhì)得出oa=ob,再由角平分線得出abe是等腰直角三角形,得出ab=be,證明aob是等邊三角形,得出abo=60,ob=ab,得出ob=be,由三角形內(nèi)角和定理和等腰三角形的性質(zhì)可得boe=(18030)=75故選c考點:矩形的性質(zhì)10. 如圖,平行四邊形abcd的對角線ac與bd相交于點o,aebc于e,ab,ac2,bd4,則ae的長為
15、()a. b. c. d. 【答案】d【解析】【分析】由勾股定理的逆定理可判定bac是直角三角形,繼而根據(jù)求出平行四邊形abcd的面積即可求解【詳解】解:ac2,bd4,四邊形abcd是平行四邊形,aoac1,bobd2,ab,ab2+ao2bo2,bac90,在rtbac中,bc,sbacabacbcae,2ae,ae,故選:d【點睛】本題考查了勾股定理的逆定理和平行四邊形的性質(zhì),能得出bac是直角三角形是解此題的關(guān)鍵二、填空題(本大題共5小題,共15分)11. 使式子有意義的x的取值范圍是_【答案】x1且x1【解析】【分析】根據(jù)分式及二次根式有意義的條件,即可得出x的取值范圍【詳解】式子有
16、意義,解得:x1且x1故答案為:x1且x1【點睛】本題主要考查二次根式以及分式有意義的條件,此類為??碱},熟練掌握二次根式以及分式有意義的條件是解題關(guān)鍵12. 如圖,四邊形abcd中,e,f,g,h分別是邊ab、bc、cd、da的中點若四邊形efgh為菱形,則對角線ac、bd應(yīng)滿足條件_【答案】ac=bd【解析】試題分析:添加的條件應(yīng)為:ac=bd,把ac=bd作為已知條件,根據(jù)三角形的中位線定理可得,hg平行且等于ac的一半,ef平行且等于ac的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到hg和ef平行且相等,所以efgh為平行四邊形,又eh等于bd的一半且ac=bd,所以得到所證
17、四邊形的鄰邊eh與hg相等,所以四邊形efgh為菱形試題解析:添加的條件應(yīng)為:ac=bd證明:e,f,g,h分別是邊ab、bc、cd、da的中點,在adc中,hg為adc的中位線,所以hgac且hg=ac;同理efac且ef=ac,同理可得eh=bd,則hgef且hg=ef,四邊形efgh為平行四邊形,又ac=bd,所以ef=eh,四邊形efgh為菱形考點:1菱形的性質(zhì);2三角形中位線定理13. 如圖,延長矩形abcd的邊bc至點e,使cebd,連結(jié)ae,如果adb30,則e_度【答案】15【解析】分析:連接ac,由矩形性質(zhì)可得e=dae、bd=ac=ce,知e=cae,而adb=cad=30
18、,可得e度數(shù)詳解:連接ac,四邊形abcd是矩形,adbe,ac=bd,且adb=cad=30,e=dae,又bd=ce,ce=ca,e=cae,cad=cae+dae,e+e=30,即e=15,故答案為15點睛:本題主要考查矩形性質(zhì),熟練掌握矩形對角線相等且互相平分、對邊平行是解題關(guān)鍵14. 如圖,某會展中心在會展期間準備將高5m,長13m,寬2m的樓道上鋪地毯,已知地毯每平方米18元,請你幫助計算一下,鋪完這個樓道至少需要_元錢【答案】612.【解析】【分析】先由勾股定理求出bc的長為12m,再用(ac+bc)乘以2乘以18即可得到答案【詳解】如圖,c=90,ab=13m,ac=5m,bc
19、=12m,(元),故填:612.【點睛】此題考查勾股定理、平移的性質(zhì),題中求出地毯的總長度是解題的關(guān)鍵,地毯的長度由平移可等于樓梯的垂直高度和水平距離的和,進而求得地毯的面積.15. 如圖,在平行四邊形abcd中,p是cd邊上一點,且ap和bp分別平分dab和cba,若ad=5,ap=8,則apb的周長是_【答案】24.【解析】試題分析: 四邊形abcd平行四邊形,adcb,abcd,dab+cba=180,又ap和bp分別平分dab和cba,pab=dab,pba=abc,pab+pba=(dab+cba)=90,apb=180(pab+pba)=90;abcd,pab=dpa,dap=dp
20、a,ad=dp=5,同理:pc=cb=5,即ab=dc=dp+pc=10,在rtapb中,ab=10,ap=8,bp=6,apb的周長=6+8+10=24.考點:1平行四邊形;2角平分線性質(zhì);3勾股定理;4等腰三角形.三、計算題(本大題共2小題,共15分)16. 計算:(1)()();(2)()()+()2【答案】(1);(2)【解析】【分析】(1)先化簡二次根式、去括號,再計算二次根式的加減法即可得;(2)先利用平方差公式、完全平方公式計算二次根式的乘法,再計算二次根式的加減法即可得【詳解】(1)原式,;(2)原式,【點睛】本題考查了二次根式的乘法與加減法、平方差公式、完全平方公式,熟記運算
21、法則和公式是解題關(guān)鍵17. 已知a,求的值【答案】,3【解析】【分析】由可得 得到 再化簡代數(shù)式,代入求值即可得到答案【詳解】解: , 原式 3【點睛】本題考查的是二次根式的化簡求值,考查了二次根式的加減運算,乘除運算,二次根式的性質(zhì),掌握二次根式的性質(zhì)與化簡求值是解題的關(guān)鍵四、解答題(本大題共6小題,共60分)18. 在數(shù)軸上表示a、b、c三數(shù)點位置如下圖所示,化簡:|c|-|a-b|【答案】2a【解析】試題分析:首先根據(jù)數(shù)軸可以確定的符號,以及各個絕對值數(shù)內(nèi)面的數(shù)的大小,然后即可去掉絕對值符號,從而對式子進行化簡試題解析:根據(jù)數(shù)軸可以得到: 且 則: 19. 如圖,四邊形abcd中,ab=
22、20,bc=15,cd=7,ad=24,b=90(1)判斷d是否是直角,并說明理由(2)求四邊形abcd的面積.【答案】(1)d是直角理由見解析;(2)234.【解析】【分析】(1)連接ac,先根據(jù)勾股定理求得ac的長,再根據(jù)勾股定理的逆定理,求得d=90即可;(2)根據(jù)acd和acb的面積之和等于四邊形abcd的面積,進行計算即可【詳解】(1)d是直角理由如下:連接acab=20,bc=15,b=90,由勾股定理得ac2=202+152=625又cd=7,ad=24,cd2+ad2=625,ac2=cd2+ad2,d=90(2)四邊形abcd的面積=addc+abbc=247+2015=23
23、4【點睛】考查了勾股定理以及勾股定理的逆定理的綜合運用,解決問題時需要區(qū)別勾股定理及其逆定理通過作輔助線,將四邊形問題轉(zhuǎn)化為三角形問題是關(guān)鍵20. 如圖,在abcd中,aebd,cfbd,垂足分別為e、f求證:(1)aecf;(2)四邊形aecf是平行四邊形【答案】(1)見解析;(2)見解析【解析】【分析】(1)利用平行四邊形的性質(zhì),結(jié)合已知條件,證明即可得到答案;(2)證明,結(jié)合 可得結(jié)論【詳解】證明:(1)四邊形abcd是平行四邊形,adbc,adbc,adecbf,aebd,cfbd,aedcfb90,在ade和cbf中,(aas),aecf(2)aebd,cfbd,aecf,由(1)得
24、aecf,四邊形aecf是平行四邊形【點睛】本題考查是三角形全等的判定與性質(zhì),平行四邊形的性質(zhì)與判定,掌握以上知識是解題的關(guān)鍵21. 如圖,ad是等腰abc底邊bc上的高.點o是ac中點,延長do到e,使,連接ae,ce.(1)求證:四邊形adce是矩形;(2)若,求四邊形adce的面積.【答案】(1)證明見解析;(2)四邊形adce的面積是120.【解析】(1)根據(jù)平行四邊形的性質(zhì)得出四邊形abcd是平行四邊形,根據(jù)垂直推出adc=90,根據(jù)矩形的判定得出即可;(2)求出dc,根據(jù)勾股定理求出ad,根據(jù)矩形的面積公式求出即可.解:(1)證明:點o是ac的中點,ao=oc,oe=od,四邊形a
25、dce是平行四邊形,ad是等腰abc底邊上的高,adc=90,四邊形adce是矩形.(2)ad是等腰abc底邊上的高,bc=16,ab=17,bd=cd=8,ab=ac=17,adc=90,由勾股定理得:ad=15,四邊形adce的面積是addc=158=120.“點睛”本題考查了平行四邊形的判定,矩形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理的應(yīng)用,能綜合運用定理進行推理和計算是解此題的關(guān)鍵.22. 如圖,在菱形abcd中,ab2,dab60,點e是ad邊的中點,點m是ab邊上一動點(不與點a重合),延長me交射線cd于點n,連接md、an(1)求證:四邊形amdn是平行四邊形;(2)在點m移動過程中:當(dāng)四邊形amdn成矩形時,求此時am長;當(dāng)四邊形amdn成菱形時,求此時am的長【答案】(1)見解析;(2)am1,am2【解析】【分析】(1)由四邊形abcd菱形,得到 再證明,可得,從而可得結(jié)論;(2)由四邊形amdn成矩形,則 由 可得 從而可得答案,由四邊形amdn成菱形,則dmam,結(jié)合,可得為等邊三角形,從而可得結(jié)論【詳解】解:(1)四邊形abcd是菱形,abcdad2,abcd
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度山西省高校教師資格證之高等教育法規(guī)真題練習(xí)試卷B卷附答案
- 2024年大、中容量數(shù)字程控交換機項目資金需求報告代可行性研究報告
- 2024年機械治療及病房護理設(shè)備項目資金申請報告代可行性研究報告
- 幼兒園校舍安全排查自查報告范文
- 2024年產(chǎn)品保修服務(wù)協(xié)議文本
- 2024年專用液化氣運輸服務(wù)協(xié)議范本
- 2024年建筑效果設(shè)計方案協(xié)議模板
- 2024年二手車銷售協(xié)議:全面細化
- 倉庫租賃與承包協(xié)議范本2024年適用
- 出口業(yè)務(wù)協(xié)議樣式2024年專業(yè)
- 儲槽基礎(chǔ)施工方案#吉林
- Alices--adventures-in-wonderland愛麗絲夢游仙境PPT課件
- 2021年四史學(xué)習(xí)教育PPT
- 財務(wù)共享服務(wù)中心在企業(yè)中的應(yīng)用分析——以國美電器集團為例[精選]
- 幼兒園大班數(shù)學(xué)練習(xí)題(直接打印版)
- 民警三個規(guī)定自查自糾報告6篇范文
- 成立紀檢監(jiān)察領(lǐng)導(dǎo)小組3篇
- 查詢深溝球軸承尺寸和公差
- 關(guān)于柜面操作關(guān)鍵環(huán)節(jié)的風(fēng)險提示
- 抽油桿設(shè)計方法
- 工程送審結(jié)算模板(經(jīng)典實用)
評論
0/150
提交評論