




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、試探交通運(yùn)輸發(fā)展與國(guó)民經(jīng)濟(jì)的關(guān)系小組成員: 金融學(xué)院2001級(jí)袁新熠 李泓良 王陽(yáng) 童運(yùn)超 羅衛(wèi)平 陳東 指導(dǎo)教師 周游日期 2004年5月摘要:本文主要通過(guò)對(duì)我國(guó)1991年到2002年交通運(yùn)輸業(yè)的發(fā)展?fàn)顩r與國(guó)民經(jīng)濟(jì)的發(fā)展之間的關(guān)系進(jìn)行多因素實(shí)證分析。建立以國(guó)民經(jīng)濟(jì)指標(biāo)為應(yīng)變量,交通運(yùn)輸業(yè)的經(jīng)濟(jì)指標(biāo)為自變量的多元線性回歸模型,試圖探索交通運(yùn)輸發(fā)展與國(guó)民經(jīng)濟(jì)的關(guān)系。首先,我們收集了相關(guān)的數(shù)據(jù),利用EVIEWS軟件對(duì)計(jì)量模型進(jìn)行了參數(shù)估計(jì),并建立了理論模型。然后,進(jìn)行檢驗(yàn)并對(duì)模型加以修正。最后,我們結(jié)合相關(guān)的理論對(duì)所得的分析結(jié)果作了經(jīng)濟(jì)意義的分析。一.問(wèn)題的提出與猜測(cè): “要想富,先修路”是我們大
2、家都耳熟能詳?shù)囊痪湓?,改革開(kāi)放以來(lái),我國(guó)的交通運(yùn)輸業(yè)有了很大的發(fā)展,表現(xiàn)在運(yùn)輸線路長(zhǎng)度上和客貨運(yùn)送量上都大幅度增長(zhǎng),與此同時(shí),我國(guó)的經(jīng)濟(jì)發(fā)展也快速發(fā)展。二者的同步發(fā)展是否存在著某種聯(lián)系?在此,我們猜測(cè)兩者之間存在著一定的聯(lián)系,根據(jù)“要想富,先修路”這一經(jīng)驗(yàn),我們猜測(cè)交通運(yùn)輸業(yè)對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展具有先行作用,也即交通運(yùn)輸業(yè)對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展具有促進(jìn)作用。以下,我們將根據(jù)這一設(shè)想,收集相關(guān)數(shù)據(jù),并估計(jì)和檢驗(yàn),希望能夠找出二者之間是否存在關(guān)系,如若有,它們是什么樣的關(guān)系?以及它們?cè)诙啻蟪潭壬舷嚓P(guān)?二.數(shù)據(jù)的搜集: 在進(jìn)行實(shí)證分析的過(guò)程中,所需要的數(shù)據(jù),應(yīng)是能夠很好代表兩者水平的指標(biāo)。就國(guó)民經(jīng)濟(jì)而言,GD
3、P應(yīng)該是最合適的指標(biāo),因?yàn)槲覀兲骄康氖墙?jīng)濟(jì)總量的問(wèn)題,我們選取了各年我國(guó)的GDP總量(雖然人均GDP也同樣有用,但明顯不及總量GDP);對(duì)于我國(guó)交通運(yùn)輸發(fā)展?fàn)顩r的水平指標(biāo),可選擇的余地較大,但我們發(fā)現(xiàn)它們之間存在著明顯的相關(guān)性,為了盡量避免多重共線形和使模型更加簡(jiǎn)潔精確,我們選取了四個(gè)最具有代表性的指標(biāo),它們分別是全國(guó)全年客運(yùn)總量(用X1表示),全國(guó)全年貨運(yùn)總量(X2),截止當(dāng)年全國(guó)鐵路總里程數(shù)(X3),截止當(dāng)年全國(guó)公路總里程數(shù)(X4)。 本文中數(shù)據(jù)的起止時(shí)間是1991年到2002年,一共12年的數(shù)據(jù)。數(shù)據(jù)來(lái)源于中經(jīng)專網(wǎng)和國(guó)家統(tǒng)計(jì)局網(wǎng)站。三.對(duì)模型的猜測(cè): 我們假設(shè)以上四個(gè)變量和GDP之間存在
4、以下的關(guān)系,待估計(jì)方程為: Y=m+aX1+bX2+cX3+dX4+u YGDP X1全國(guó)全年客運(yùn)總量 X2 全國(guó)全年貨運(yùn)總量X3 全國(guó)鐵路總里程數(shù) X4 全國(guó)公路總里程 接下來(lái)我將利用樣本數(shù)據(jù)對(duì)參數(shù)進(jìn)行估計(jì)。四.數(shù)據(jù):(單位:1萬(wàn)人,2萬(wàn)噸,3公里,4公里)年份指標(biāo)X1X2X3X4Y19915780021662.519925810026651.919935860034560.51994590004667019955970057494.919966490066850.519976600073142.719986640076967.219996740080579.420006870088254.
5、920017010095727.9200272000.6五.模型的參數(shù)估計(jì):利用EVIEWS軟件,用OLS方法估計(jì)得:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:30Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.11.364680.0000X20.0.1.0.1895X4-0.0.-0.0.7670X31.0.5.0.0012C-.79976.147-12.51062
6、0.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression973.9812 Akaike info criterion16.89500Sum squared resid. Schwarz criterion17.09704Log likelihood-96.36999 F-statistic2130.105Durbin-Watson stat2. Prob(F-statistic)0.可得模型:Y=0.*X1+0.*X2+1.*X3-0
7、.3*X4- .7471 在上面的ols的結(jié)果中我們可以看出,變量x2與x4的p值未獲得通過(guò),我們?cè)诮酉聛?lái)的過(guò)程中進(jìn)行檢驗(yàn)和修正。六.計(jì)量經(jīng)濟(jì)學(xué)檢驗(yàn)及其修正 1.多重共線性檢驗(yàn) 用EVIEWS軟件,得相關(guān)系數(shù)矩陣表:X1X2X4X3X110.90.50.1X20.910.10.4X40.50.110.4X30.10.40.41由上可以看出,整體上線形回歸擬合較好,但x2,x4變量的參數(shù)的t檢驗(yàn)的p值大于0.05,所以t值并不顯著,而且x4的系數(shù)符號(hào)與經(jīng)濟(jì)意義不符。兩種方法結(jié)合一起來(lái)看,解釋變量確實(shí)存在多重共線性。 下面我們利用逐步回歸法(變量剔除法)進(jìn)行修正: (1)運(yùn)用ols方法逐一求y對(duì)各
8、個(gè)解釋變量的回歸.結(jié)合經(jīng)濟(jì)意義和統(tǒng)計(jì)檢驗(yàn)選出擬合效果最好的一元線形回歸方程. (a)對(duì)x1與y回歸:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:35Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.43.934120.0000C-74544.213215.745-23.181010.0000R-squared0. Mean dependent var64343.00Adj
9、usted R-squared0. S.D. dependent var27118.34S.E. of regression2041.904 Akaike info criterion18.23217Sum squared resid Schwarz criterion18.31298Log likelihood-107.3930 F-statistic1930.207Durbin-Watson stat1. Prob(F-statistic)0.(b)對(duì)x2與y回歸:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time:
10、14:35Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X20.0.15.187110.0000C-.013973.68-10.473190.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression5797.865 Akaike info criterion20.31938Sum squared resid3.
11、36E+08 Schwarz criterion20.40020Log likelihood-119.9163 F-statistic230.6482Durbin-Watson stat0. Prob(F-statistic)0.(c)對(duì)x3與y回歸:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:36Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X35.0.12.548650.00
12、00C-.126162.96-10.052380.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression6950.126 Akaike info criterion20.68192Sum squared resid4.83E+08 Schwarz criterion20.76274Log likelihood-122.0915 F-statistic157.4687Durbin-Watson stat1. Prob(F-statisti
13、c)0.(d)對(duì)x4與y回歸:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:36Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X40.0.6.0.0001C-68969.2521080.72-3.0.0084R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E
14、. of regression12568.17 Akaike info criterion21.86673Sum squared resid1.58E+09 Schwarz criterion21.94755Log likelihood-129.2004 F-statistic41.21238Durbin-Watson stat0. Prob(F-statistic)0.由以上可以得知擬合程度最好的方程是: Y = 0.*X1 - 74544.21148 (43.93412) (-23.18101) R-squared=0. S.E=2041.909 F=1930.207(2)逐步回歸,將其余
15、的解釋變量逐一代入上式中,得如下幾個(gè)模型:(a) 將x2代入:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:42Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.8.0.0000X20.0.0.0.4459C-81478.419295.350-8.0.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0.
16、 S.D. dependent var27118.34S.E. of regression2080.176 Akaike info criterion18.33061Sum squared resid Schwarz criterion18.45184Log likelihood-106.9837 F-statistic930.2357Durbin-Watson stat1. Prob(F-statistic)0.(b)將x3代入:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:43Sample: 1991 2
17、002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.22.059660.0000X31.0.5.0.0003C-.07567.214-15.539010.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression987.2214 Akaike info criterion16.83998Sum squared resid. Schwa
18、rz criterion16.96121Log likelihood-98.03990 F-statistic4145.611Durbin-Watson stat2. Prob(F-statistic)0.(c)將x4代入:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:45Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.20.655740.0000X40.0.1.0.14
19、83C-76371.763213.872-23.763160.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression1904.137 Akaike info criterion18.15376Sum squared resid Schwarz criterion18.27499Log likelihood-105.9226 F-statistic1111.059Durbin-Watson stat2. Prob(F-statistic)
20、0.由以上可以得知擬合程度最好的方程是:Y = 0.*X1 + 1.*X3 - .0399 (22.05966) (5.) (-15.53901) R-squared=0. S.E=987.2214 F=4145.611(3)再將x2,x4代入上式:(a)將x2代入:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:53Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.12.7
21、05150.0000X31.0.6.0.0003X20.0.1.0.1580C-.87881.530-15.623200.0000R-squared0. Mean dependent var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression917.2336 Akaike info criterion16.74180Sum squared resid. Schwarz criterion16.90344Log likelihood-96.45082 F-statistic3202.405Durbin-
22、Watson stat2. Prob(F-statistic)0.(b)將x4代入:Dependent Variable: YMethod: Least SquaresDate: 05/07/04 Time: 14:54Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. X10.0.20.693000.0000X31.0.4.0.0015X40.0.0.0.7394C-.08675.275-13.418020.0000R-squared0. Mean dependent
23、var64343.00Adjusted R-squared0. S.D. dependent var27118.34S.E. of regression1039.430 Akaike info criterion16.99193Sum squared resid. Schwarz criterion17.15357Log likelihood-97.95160 F-statistic2493.118Durbin-Watson stat2. Prob(F-statistic)0.由以上可知x2,x4對(duì)y的影響并不顯著,故將其刪去,得如下模型:Y = 0.*X1 + 1.*X3 - .0399 (
24、22.05966) (5.) (-15.53901) R-squared=0. S.E=987.2214 F=4145.6112.異方差檢驗(yàn)(1) ARCH檢驗(yàn)我們首先對(duì)模型進(jìn)行ARCH檢驗(yàn),得結(jié)果如下:首先對(duì)模型滯后三期:ARCH Test:F-statistic0. Probability0.Obs*R-squared1. Probability0.Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/09/04 Time: 08:57Sample(adjusted): 1994 2002Included
25、 observations: 9 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C2.23E+081.53E+081.0.2034RESID2(-1)0.0.0.0.5492RESID2(-2)-0.0.-0.0.4682RESID2(-3)-0.0.-0.0.9909R-squared0. Mean dependent var2.04E+08Adjusted R-squared-0. S.D. dependent var2.72E+08S.E. of regression3.11E+08 Akai
26、ke info criterion42.24730Sum squared resid4.82E+17 Schwarz criterion42.33495Log likelihood-186.1128 F-statistic0.Durbin-Watson stat0. Prob(F-statistic)0.再對(duì)模型滯后一期:ARCH Test:F-statistic1. Probability0.Obs*R-squared1. Probability0.Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/09
27、/04 Time: 09:01Sample(adjusted): 1992 2002Included observations: 11 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C2.93E+081.88E+081.0.1534RESID2(-1)0.0.1.0.3148R-squared0. Mean dependent var4.08E+08Adjusted R-squared0. S.D. dependent var5.16E+08S.E. of regression5.12E+08 Ak
28、aike info criterion43.10906Sum squared resid2.36E+18 Schwarz criterion43.18140Log likelihood-235.0998 F-statistic1.Durbin-Watson stat1. Prob(F-statistic)0.由以上可知,由于F和obs*R-squared的p值都大于0.05,所以其不顯著,不能拒絕原假設(shè),所以模型不存在異方差.(2)white檢驗(yàn):我們運(yùn)用white檢驗(yàn)對(duì)模型進(jìn)行異方差的檢驗(yàn),得到如下結(jié)果:White Heteroskedasticity Test:F-statistic1.
29、Probability0.Obs*R-squared6. Probability0.Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 05/07/04 Time: 15:01Sample: 1991 2002Included observations: 12VariableCoefficientStd. Errort-StatisticProb. C-4.18E+08-0.0.8766X1-67.63222320.5373-0.0.8399X121.03E-055.57E-050.0.8600X1*X30.0.0.0.9187X33719.79919588.760.0.8557X32-0.0.-0.0.8665R-squared0. Mean dependent var.6Adjusted R-squared0. S.D. dependent var.S.E. of r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信傳輸設(shè)備批發(fā)企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 香水和化妝品超市企業(yè)縣域市場(chǎng)拓展與下沉戰(zhàn)略研究報(bào)告
- 暫保單企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 年抵押借款合同書模板(二零二五年)
- 二零二五年度工傷職工傷殘等級(jí)評(píng)定及待遇協(xié)議
- 2025年度科技創(chuàng)新黨支部合作開(kāi)發(fā)協(xié)議
- 二零二五年度個(gè)體經(jīng)營(yíng)企業(yè)資金走賬規(guī)范合同
- 二零二五年度高品質(zhì)鋁材國(guó)際購(gòu)銷合同
- 二零二五年份有限公司股權(quán)激勵(lì)與員工福利保障協(xié)議
- 二零二五年度總公司與分公司間廣告宣傳與品牌推廣合作協(xié)議
- 2025年上半年高郵市國(guó)資產(chǎn)投資運(yùn)營(yíng)限公司(國(guó)企業(yè))公開(kāi)招聘工作人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 教師命題培訓(xùn)
- 【地理】亞洲的自然環(huán)境第3課時(shí) 2024-2025學(xué)年七年級(jí)地理下冊(cè)同步課件(人教版2024)
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 城市公園綠化養(yǎng)護(hù)協(xié)議
- 2025中智集團(tuán)總部及下屬企業(yè)公開(kāi)招聘4人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 小學(xué)生雪豹課件
- 基于深度強(qiáng)化學(xué)習(xí)的機(jī)械臂自主抓取算法
- 名企參考:比亞迪組織結(jié)構(gòu)及部門職責(zé)
- 神經(jīng)源性腸道康復(fù)護(hù)理
評(píng)論
0/150
提交評(píng)論