在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析中英文翻譯資料_第1頁
在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析中英文翻譯資料_第2頁
在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析中英文翻譯資料_第3頁
在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析中英文翻譯資料_第4頁
在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析中英文翻譯資料_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、在放熱過程中對半導(dǎo)體熱電偶測量數(shù)據(jù)進(jìn)行數(shù)值分析在回收實(shí)驗(yàn)樣品后,并對其分析后得出,在高壓下快速凝聚物質(zhì)是觀察物質(zhì)物理性質(zhì)和化學(xué)性質(zhì)的動態(tài)趨勢的重要基礎(chǔ)。在許多情況下不可能用一個特制的容器來存某種物質(zhì)的特定狀態(tài),所以會直接關(guān)系到?jīng)_擊波脈沖的物理參數(shù)變化。所以方法要求,人們盡可能的繼續(xù)保持對膠囊內(nèi)物質(zhì)進(jìn)行抽樣,并同時沖擊波要檢測物質(zhì),而且處在長時間的放松狀態(tài)。人們還應(yīng)該記住,沖擊波檢測膠囊實(shí)驗(yàn)是不同于純動態(tài)實(shí)驗(yàn)?;谶@個原因,兩種方法所得到的結(jié)果簡單的比較可得出許多的不正確和不足,特別是在研究某種物質(zhì)的化學(xué)變化。用沖擊波檢測物質(zhì)的方法,是根據(jù)某些問題而相互結(jié)合的動態(tài)方法,解決了傳統(tǒng)的回收凝聚物質(zhì)的

2、方法。在放熱的過程中記錄半導(dǎo)體的熱電現(xiàn)象就是這樣的一個方法。別的的文章中僅僅只是涉及到對半導(dǎo)體熱電偶的原理的運(yùn)用。這些顯然不足以獲得有關(guān)連續(xù)變量的信息。本文對此提出了建議用計(jì)算方法來分析問題的一般方法,并為活性強(qiáng)的元素制訂解決方案其中錫是用(sns)來解決。在對實(shí)驗(yàn)過程中所記錄的半導(dǎo)體熱電偶的放熱圖中,根據(jù)敏感元件內(nèi)部的結(jié)構(gòu)研究利用電平測量內(nèi)部電極的結(jié)構(gòu),該電極通過平版石灰?guī)r絕緣套管來連接的。在沖擊波實(shí)驗(yàn)裝置中增加負(fù)荷使其速度高于1公里/秒(箭頭方向表示物體的運(yùn)動方向)。在動態(tài)壓力下降時,艙內(nèi)溫度呈現(xiàn)一定分布,是隨時間變化而分布,是為了測量電路的電磁場而發(fā)生的。假設(shè)電磁場是由于半導(dǎo)體的存在可得

3、: s是半導(dǎo)體的熱電勢,ts1是熱電偶的內(nèi)部電極的溫度; ts2是熱電偶外部界面的溫度。符號的意義是熱電偶的內(nèi)部電極與外部界面之間的溫差。因此,該電路(存在接地電極情況下)如果0而且,那么就0。當(dāng)半導(dǎo)體熱電偶沒有放熱過程,那么電磁場就下降到零,因?yàn)槔鋮s的熱電偶不存在電磁場。原因是在熱釋放過程中,將有一定的電磁場增長下降到零之后,化學(xué)反應(yīng)就會停止。所以本文對此提出了建議用計(jì)算方法來分析問題的一般方法,并為活性強(qiáng)的元素制訂解決方案其中錫是用(sns)來解決。如果電極兩端的電壓接近,那它就會被記錄,如果滿足電阻值,是測量設(shè)備的輸入電阻和是樣品的內(nèi)部電阻。如果= 50或75在沖擊波實(shí)驗(yàn)中就會被使用,很

4、容易得出研究物質(zhì)的電導(dǎo)率和可直接測量半導(dǎo)體材的數(shù)值。原則上,樣品可以被放置一個的金屬箔內(nèi)與排除樣品之間產(chǎn)生的熱電偶熱慣性低電極的電路。在實(shí)驗(yàn)中,我們進(jìn)行了合成反應(yīng)合成了放熱過程的超導(dǎo)材料陶瓷。熱電偶是由活性較強(qiáng)的錫做成,這是一個熱電功率為的半導(dǎo)體。按照規(guī)定,實(shí)驗(yàn)中的幾何參數(shù)為:,。用沖擊波轟擊5mm厚的鐵板所產(chǎn)生的壓強(qiáng)為16gp。最初的樣本顯示:混合物由于存在高含量的單質(zhì)銅導(dǎo)致導(dǎo)電性較高。該熱電偶電阻不會使整個錄音期間0.1re信號衰減。要使u隨時間t而變化,我們使用了能自動記錄數(shù)據(jù)的f4226轉(zhuǎn)換器把模擬信號轉(zhuǎn)換成數(shù)字信號,在允許你改變掃描速度的基礎(chǔ)上,縮短周期。從示波器上的波形可知,沖擊波

5、載荷著能使半導(dǎo)體進(jìn)行化學(xué)反應(yīng)的負(fù)脈沖。該過程可進(jìn)一步解釋為:在熱釋放狀態(tài)時,樣本加熱反應(yīng)的情況下熱釋放產(chǎn)生了一個極性為正極的信號。事實(shí)上,這種脈沖必須是正極的,可從公式成立的條件解釋:(所研究的混合物中含有活性較強(qiáng)的錫是用sns來解決)和s 0 。其次,約17毫秒后,沖擊波進(jìn)入樣品,由于放熱反應(yīng)使ts2的值增加。在電壓上升時,使它在一段時間內(nèi)下降(這可能是因?yàn)樵诤铣蛇^程中形成了低電導(dǎo)率的中間產(chǎn)品)。因此會變得比更大。作為最終產(chǎn)品的形式最初的高導(dǎo)電性也會恢復(fù),因此,隨著的增長。最后,降低了冷卻時間。很顯然,要得知示波器為什么會產(chǎn)生這樣波形,就必須建立數(shù)學(xué)模型對電物理過程進(jìn)行仿真實(shí)驗(yàn)。即使是在一個

6、平面內(nèi),也是一個復(fù)雜的問題,其中一個必須要解決的是不穩(wěn)定的情況下的導(dǎo)熱方程,也要考慮到在該樣本中的導(dǎo)電性能的變化等等。在本論文中,我們考慮的一個關(guān)系到如何分析錫半導(dǎo)體熱電偶操作數(shù)值的特殊情況。在這里,反應(yīng)系統(tǒng)模型為放熱過程,不同比例的錫和硫的混合也可運(yùn)用與sns。外文文獻(xiàn)翻譯原文2of semiconductor thermocouple operation in recording exothermic processes in a recovery capsules. nabatov, a. v. kulbachevskii, and a. v. lebedev udc 539.63+53

7、7.226numerical simulation is used to analyze the operation of a semiconductor tin-monosulfidethermocoupie. the element is used to record ezothermic processes in shock-recovery experiments.we solved the problem in a one-dimensional formulation by considering a multilayer schemethat models the locatio

8、n of the sample and the thermocouple inside a real flat capsule. numericalcalculations yield time dependences of the thermal electromotive force (emf) at various heatreleaserates in the substance under studyhigh-speed methods of studying the properties of condensed material under shock compression a

9、nd shock-recovery experiments with subsequent analysis of the samples are the basis of the dynamic trend in high-pressure physics and chemistry 1. in many cases, however, there are no sufficient grounds to assert that the state of the substance recovered in a special capsule is related directly to t

10、he changes in the physical parameters recorded in the shock-wave pulse. methods are required that make it possible to continuously keep track of the behavior of the sample inside the capsule, starting with the moment when the shock wave enters the substance, and then for a long period of time in the

11、 relaxed state. one should also bear in mind that the shock-wave action in a capsule can differ significantly from loading in a pure dynamic experiment. for this reason, a simple comparison of the results obtained by both methods is not correct enough, particularly in studies of shock-induced chemic

12、al transformations in heterogeneous media.according to 2, this problem should be solved by various combined methods: dynamic methods, conventional recovery methods, and a new methodical approach based on continuous diagnostics of a substance inside a capsule using electrical methods. recording of ex

13、othermal processes based on the thermoelectric phenomenon in semiconductors is one such method 3. the latter article, however, deals only with the principles of operation of a semiconductor thermocouple. these are obviously insufficient to obtain quantitative information on the transformations in qu

14、estion. the present paper considers a general approach to the formulation of numerical-analysis problems for the suggested method and presents solution results for asensitive element in which tin monosulfide (sns) is used.a diagram of experiments on the recording of exothermal processes in a recover

15、y capsule with a semiconductor thermocouple is presented in fig. 1. substance 4 under study with sensitive element 5 are placed inside a flat capsule for electric measurements between the front wall of case 1 and massive inside electrode 2. the electrode is insulated from the case by sleeve 3 made o

16、f lithographic limestone. shock-wave loading of the experimental setup is produced by an aluminum striker accelerated by an explosion to velocities higher than 1 km/sec (the arrows show the direction of the action). after a drop in dynamic pressure, there is a certain distribution of temperature t i

17、nside the capsule. the distribution changes with time and is responsible for the occurrence of emf e in the measuring circuit. assuming that the main contribution to the emf is due to the presence of the semiconductor thermocouple, in the ideally plane case, we havewhere s is the thermoelectric powe

18、r of the semiconductor; tsl is the temperature at the interface between the thermocouple and the internal electrode; ts2 is the temperature at the interface between the sample and the thermocouple. the sign of the registered signal is determined by the sign of s and that of the temperature differenc

19、e between the faces of the thermocoup.le. thus, for this circuit (grounded electrode-capsule case) /e 0 if s(t) 0 and ts2 tsl. when there is no exothermal process in the sample, the emf drops to zero because of cooling of the thermocouple and the substance under study. in the case of heat release du

20、e to, for example, a chemical reaction, there will be some growth in emf followed by a decrease to zero. if the voltage u across the electrodes is close to ae, it can only be recorded if the condition re ri is satisfied, where re is the input resistance of the measuring device, and ri is the interna

21、l resistance of the experimental unit. since re = 50 or 75 are used in shock-wave experiments, it is easy to estimate the electrical conductivities of the studied substance and the semiconductor material for which the quantity ae can be measured directly. in principle, the sample can be excluded fro

22、m the electrical circuit by placing an additional foil electrode with low heat inertia between the sample and the thermocouple.figure 2 presents an oscilloscope trace that demonstrates the possibilities of the method. in theexperiment, we registered the synthesis reaction (exothermal process) for su

23、perconducting cuatibytcoa ceramics. the thermocouple was made of tin monosulfide, which is a semiconductor compound with a thermoelectric power of +550 #v/k under normal conditions. in accordance with the notation in fig. 1,the geometric parameters of the experimental arrangement were as follows: i1

24、 = 7 ram, 12 = 13 = 1 ram, and /4 = 16 ram. the amplitude of the shock wave generated inside the steel wall of the capsule by a striker 5 mmthick was 16 gpa. the initial sample showed a high electrical conductivity, because of the presence of free copper in the pressed mixture. the resistance of the

25、 thermocouple did not exceed 0.1re throughout the period of signal recording. to register the dependence of u on time t, we used an automated recording system based on an f4226 analog-to-digital converter, which allows one to change the sweep rate discretely, decreasing it with time 4. as is seen fr

26、om the oscilloscope trace, the shock-wave loading of the cell generates negative pulses that are the response of the semiconductor substance to the shock-wave action 5. the further behavior of the record can be explained as follows. in the released state, a signal of positive polarity forms which is

27、 caused by residual heating of the cell in the absence of heat release due to the reaction in the sample. the fact that this pulse must be positive can be inferred from the following conditions see the explanations for formula (1): ts2 tsl (the studied mixture and sns are heated more strongly in com

28、parison with the capsule material) and s 0. next, about 17 msec after the shock wave enters the sample, a second positive signalfollows, which is caused by an increase in ts2 due to the exothermai reaction. the rise in voltage, however, is followed by its drop for some time (this is probably due to

29、the fact that intermediate products with a low electrical conductivity are formed in the process of synthesis). as a result, ri becomes much greater than re. as the final product forms, the initial high electrical conductivity is restored and, accordingly, u grows. finally, the signal decreases, bec

30、ause of cooling of the cell.it is obvious that for detailed interpretation of such oscilloscope traces, one must supplement the experimental results by a mathematical simulation of the registered electrophysical processes. in a general formulation even for the plane variant, this is an involved prob

31、lem, in which one must solve nonstationary heatconduction equations with varying parameters, choose kinetic dependences describing the chemical interaction, take into account the change in the electrical properties of the sample, and so forth. in the present paper, we consider a particular case of t

32、he problem related to the numerical analysis of the operation of a tin-monosulfide semiconductor thermocouple. here, the reacting system which models an exothermal process is a mixture of tin and sulfur in a stoichiometric proportion that corresponds to the synthesis of sns.references1. g. a. adadur

33、ov, t. v. bavina, o. n. breusov, et al., on the relationship between the state ofmaterial under dynamic compression and results of studies of recovered samples, in: combustion and ezplosion: proc. of the 3rd ussr symp. on combustion and explosion in russian, nauka, moscow (1972), pp. 523-528.2. s. s

34、. nabatov, g. e. ivanchikhina, a. v. kolesnikov, et al., shock-wave synthesis of tin monosulfide, khim. fiz., 14, nos. 2 and 3, 40-48 (1995).3. s. s. nabatov, s. o. shubitidze, and v. v. yakushev, use of the thermal emf phenomenon insemiconductors to study exothermal processes in a recovery capsule, fiz. goreniya vzryva, 26,no. 6, 114-116 (1990)4. a. v. lebedev, s. s. nabatov, and t. a. alekseenko, a measuring complex based on an f4226 analog-to-digital converter and its use for recording of electrical parameters in shock-wave recovery exper

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論