天然氣工程課程設(shè)計報告_第1頁
天然氣工程課程設(shè)計報告_第2頁
天然氣工程課程設(shè)計報告_第3頁
天然氣工程課程設(shè)計報告_第4頁
天然氣工程課程設(shè)計報告_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、天然氣工程課程設(shè)計報告姓 名: 王 巖 學 號: 2008* 班 級: 054*-* 專 業(yè): 勘查技術(shù)與工程(油氣井)學 院: 工程學院 指導老師: 寧伏龍老師 目錄一、 程序運行圖示二、 程序代碼分析三、 該井節(jié)點分析四、 未來天然氣工業(yè)的發(fā)展趨勢和我國面臨的一些瓶頸問題一、程序運行圖示1.歡迎界面以及基本參數(shù)的輸入2.酸性氣體偏差系數(shù)計算(hy模型/dpk模型/dpr模型與wa校正法)3.天然氣相平衡計算(露點模型/泡點模型/等溫閃蒸模型)4天然氣兩相管流壓力計算(mukherjeebrill模型)5.天然氣水合物生成預測及抑制劑用量計算二、程序代碼分析1.氣體偏差系數(shù)計算(hy模型,d

2、pk模型,dpr模型)1.1hy模型+wa校正法1.1.1hy偏差系數(shù)計算模型 該法以 starling-carnahan 狀態(tài)方程為基礎(chǔ) ,通過對 standing-katz 圖版進行擬合 ,得到以下關(guān)系式:z = 0. 06125* ppr / (*tpr ) *exp - 1. 2 *(1 - 1/ tpr )2r 為擬對比密度 ,可用牛頓迭代法從如下方程求得:0 = (r +r2 +r3 r4)/(1 - r )3 -(14. 76 / tpr -9. 76 / tpr2+ 4. 58/tpr3)*r2+(90. 7/tpr-242. 2/tpr2+ 42. 4/tpr3)* r (2

3、. 18+2. 82/ tpr)-0. 01652( ppr / tpr )* exp - 1.2*(1 - 1/ tpr )2 該法應用范圍是:1. 2 tpr 3 ;0. 1 ppr 24. 0。部分代碼如下:private sub command1_click()dim n(11) as double -定義各組分dim i as integerfor i = 0 to 11n(i) = val(歡迎界面.摩爾分數(shù)(i) / 100next idim p as double, t as double-定義壓力、溫度p = val(絕對工作壓力)t = val(絕對工作溫度)dim tc(

4、11) as double, pc(11) as double-定義臨界溫度、臨界壓力tc(0) = 373.5833 pc(11) = 295.5315dim tpc as double, ppc as double-計算擬臨界壓力、擬臨界溫度tpc = 0ppc = 0for i = 0 to 11 tpc = tpc + n(i) * tc(i) ppc = ppc + n(i) * pc(i)next idim tpr as double, ppr as double-計算擬對比壓力、擬對比溫度tpr = t / tpcppr = p / ppcdim r as double-計算對比

5、密度(牛頓迭代法)dim x as double, x1 as double, f as double, f1 as doubleabsolution = 1x = 0do while absolution 0.00001f = (-0.06152) * (ppr / tpr) * exp(-1.2) * (1 - (1 / tpr) 2) + (x + x 2 + x 3 - x 4) / (1 - x) 3) - (14.76 / tpr) - (9.76 / (tpr 2) + (4.58 / (tpr 3) * (x 2) + (90.7 / tpr) - (242.2 / (tpr

6、2) + (42.4 / (tpr 3) * (x (2.18 + (2.82 / tpr)f1 = (1 + 4 * x + 4 * (x 2) - 4 * (x 3) + x 4) / (1 - x) 4) - (29.52 / tpr) - (19.52 / (tpr 2) + (9.16 / (tpr 3) * x + (2.18 + (2.82 / tpr) * (90.7 / tpr) - (242.2 / (tpr 2) + (42.4 / (tpr 3) * (x (1.18 + (2.82 / tpr)x1 = x - f / f1absolution = abs(x1 -

7、x)x = x1loopr = xdim z as double-用hy模型計算偏差系數(shù)z = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / tpr - 9.76 / (tpr 2) + 4.58 / (tpr 3) * r + (90.7 / tpr - 242.2 / (tpr 2) + 42.4 / (tpr 3) * (r (1.18 + (2.82 / tpr)hy模型z = format(z, 0.0000)-hy模型求得未校正的z1.1.2wa校正法wa校正法引入?yún)?shù),主要考慮了一些常見的極性分子( h2 s、 co2 )的影響 ,希望用

8、此參數(shù)來彌補常用計算方法的缺陷。參數(shù)的關(guān)系式如下:= 15 (m - m2) + 4. 167 ( n0. 5- n2)式中:m 為氣體混合物中 h2 s與 co2 的摩爾分數(shù)之和; n 為氣體混合物中 h2 s的摩爾分數(shù)。 根據(jù) wichert2aziz 的觀點 ,每個組分的臨界溫度和臨界壓力都應與參數(shù)有關(guān) ,臨界參數(shù)的校正關(guān)系式如下所示:t ci= tci - p ci= pci * t ci/ tci 式中: tci為i 組分的臨界溫度 ,k; pci為i 組分的臨界壓力 ,kpa ; tci為 i 組分的校正臨界溫度 , k; pci為 i組分的校正臨界壓力 ,kpa。部分代碼如下:d

9、im nhc as double, nh as double, as double, tc1(11) as double, pc1(11) as double-wa校正nhc = n(0) + n(2)nh = n(0) = 15 * (nhc - nhc 2) + 4.167 * (nh 0.5 - nh 2)for i = 0 to 11 tc1(i) = tc(i) - pc1(i) = pc(i) * tc1(i) / tc(i)next idim tpc1 as double, ppc1 as double, z1 as doubletpc1 = 0ppc1 = 0for i = 0

10、 to 11 tpc1 = tpc1 + n(i) * tc1(i) ppc1 = ppc1 + n(i) * pc1(i)next idim tpr1 as double, ppr1 as doubleif t = 17.24 then dim t1 as double t1 = t + 1.94 * (p / 2760 - (2.1 * (10 (-8) * (p 2) tpr1 = t1 / tpc1 ppr1 = p / ppc1 z1 = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / tpr1 - 9.76 / (tpr1 2) + 4.58

11、 / (tpr1 3) * r + (90.7 / tpr1 - 242.2 / (tpr1 2) + 42.4 / (tpr1 3) * (r (1.18 + (2.82 / tpr1) hy模型waz = format(z1, 0.0000)else tpr1 = t / tpc1 ppr1 = p / ppc1 z1 = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / tpr1 - 9.76 / (tpr1 2) + 4.58 / (tpr1 3) * r + (90.7 / tpr1 - 242.2 / (tpr1 2) + 42.4 / (tp

12、r1 3) * (r (1.18 + (2.82 / tpr1) hy模型waz = format(z1, 0.0000)-校正后的偏差系數(shù)zend ifend sub1.2dak模型+wa校正法1.2.1dak偏差系數(shù)計算模型該模型與 dranchuk-purvis-robinsion 計算法相同 ,但相對密度應采用牛頓迭代法從下式求出:0=1 + (a1 + a2/tpr+ a3/tpr3+ a4/tpr4+a5/tpr5)* r +(a6+a7/tpr+ a8/tpr2)*r2- a9*(a7/tpr+ a8/tpr3) r5 +a10/tpr3*r 2*(1 + a11*r2 )* e

13、xp ( - a11*r2 ) - 0. 27*ppr/(r *tpr) 式中: ai為給定系數(shù)。 該法應用范圍是:1. 0 tpr 3 ,0. 2 ppr 30 ;或者0. 7 tpr 1. 0 , ppr 0.00001f = (-0.27) * ppr / tpr + x + (a1 + a2 / tpr + a3 / (tpr 3) + a4 / (tpr 4) + a5 / (tpr 5) * (x 2) + (a6 + a7 / tpr + a8 / (tpr 2) * (x 3) - a9 * (a7 / tpr + a8 / (tpr 2) * (x 6) + a10 * (1

14、 + a11 * (x 2) * (x 3) / (tpr 3) * exp(-a11 * (x 2)f11 = 1 + 2 * (a1 + a2 / tpr + a3 / (tpr 3) + a4 / (tpr 4) + a5 / (tpr 5) * x + 3 * (a6 + a7 / tpr + a8 / (tpr 2) * (x 2) - 6 * a9 * (a7 / tpr + a8 / (tpr 2) * (x 5)f12 = (a10 / (tpr 3) * (3 * (x 2) + a11 * (3 * (x 4) - 2 * a11 * (x 6) * exp(-a11 *

15、(x 2)f1 = f11 + f12x1 = x - f / f1absolution = abs(x1 - x)x = x1loopr = xdim z as double-用dak模型計算偏差系數(shù)z = 1 + (a1 + a2 / tpr + a3 / (tpr 3) + a4 / (tpr 4) + a5 / (tpr 5) * r + (a6 + a7 / tpr + a8 / (tpr 2) * (r 2) - a9 * (a7 / tpr + a8 / (tpr 2) * (r 5) + a10 * (1 + a11 * (x 2) * (x 2) / (tpr 3) * ex

16、p(-a11) * (x 2)dak模型z = format(z, 0.0000)-dpk模型求得未校正的z1.2.2wa校正法同上,略。1.3dpr模型+wa校正法1.3.1dpr偏差系數(shù)計算模型dranchuk、purvis 和 robinsion 根據(jù) benedict-webb-rubin 狀態(tài)方程,將偏差系數(shù)轉(zhuǎn)換為對比壓力和對比溫度的函數(shù) ,于 1974 年推導出了帶 8 個常數(shù)的經(jīng)驗公式 ,其形式為:z = 1 +( a1 + a2/ tpr+ a3/tpr3)* r+ (a4 + a5/tpr)* r2+(a5 * a6/tpr)* r 5 - a7/tpr3* r2*(1 +

17、a8* r2 )* exp ( - a8* r2)式中: ai 為給定系數(shù); ppr為擬對比壓力 ,無因次; tpr為擬對比溫度 ,無因次。 dpr法使用 newton-raphson迭代法解非線性問題可得到偏差系數(shù)的值。這種方法的使用范圍是:1. 05 tpr 3 ;0. 2 ppr 30。部分代碼如下:-計算對比密度dim a1 as double, a2 as double, a3 as double, a4 as double, a5 as double, a6 as double, a7 as double, a8 as doublea1 = 0.31506237a2 = -1.04

18、67099a3 = -0.57832729a4 = 0.53530771a5 = -0.61232032a6 = -0.10488813a7 = 0.68157001a8 = 0.68446549dim x, x1 as double, f as double, f1 as doubleabsolution = 1x = 0do while absolution 0.00001f = -0.27 * ppr / tpr + x + (a1 + a2 / tpr + a3 / (tpr 3) * (x 2) + (a4 + a5 / tpr) * (x 3) + a5 * a6 / tpr *

19、(x 6) + a7 / (tpr 3) * (1 + a8 * (x 2) * (x 3) * exp(-a8 * (x 2)f1 = 1 + 2 * (a1 + a2 / tpr + a3 / (tpr 3) * x + 3 * (a4 + a5 / tpr) * (x 2) + 6 * a5 * a6 / tpr * (x 5) + a7 / (tpr 3) * (3 * (x 2) + a8 * (3 * (x 4) - 2 * a8 * (x 6) * exp(-a8 * (x 2)x1 = x - f / f1absolution = abs(x1 - x)x = x1loopr

20、= xdim z as double-用dpr模型計算偏差系數(shù)z = 1 + (a1 + a2 / tpr + a3 / (tpr 3) * x + (a4 + a5 / tpr) * (x 2) + a5 * a6 / tpr * (x 5) + a7 / (tpr 3) * (1 + a8 * (x 2) * (x 2) * exp(-a8) * (x 2)dpr模型z = format(z, 0.0000)-dpr型求得未校正的z1.3.2wa校正法同上,略。2.天然氣相平衡計算(露點,泡點,等溫閃蒸模型)2.1等溫閃蒸模型流體相平衡模型主要由三部分構(gòu)成:描述平衡氣液相組成、物質(zhì)的來那個

21、(摩爾數(shù))及平衡常數(shù)與溫度、壓力關(guān)系的物料平衡方程組;描述平衡氣液相組成、物質(zhì)的量、平衡常數(shù)與逸度關(guān)系的熱力學平衡條件方程組及用于相平衡計算的狀態(tài)方程組機構(gòu)體系。三大方程組聯(lián)立即可分析油氣烴類體系相平衡模型。等溫閃蒸模型即油氣烴類體系的相態(tài)變化處于部分汽化和部分液化的狀態(tài)??衫脀ilson平衡常數(shù)公式以及pr狀態(tài)方程求解分析。部分代碼如下:private sub command3_click()dim n(11) as double-獲得各組分摩爾分數(shù)dim i as integerfor i = 0 to 11 n(i) = val(歡迎界面.摩爾分數(shù)(i) / 100next idim

22、tc(11) as double, pc(11) as double-獲得臨界參數(shù)dim w(11) as double-偏心因子w(0) = 0.1dim kij(11, 11) as double-獲得二元交互作用參數(shù)kij(0, 0) = 0dim t as double, p as double-獲得一組t、p值t = val(溫度)p = val(壓力)dim k(11) as double, tr(11) as double, pr(11) as double-用wilson公式求解各組分平衡常數(shù)for i = 0 to 11 pr(i) = p / pc(i) tr(i) = t

23、 / tc(i)next ifor i = 0 to 11 k(i) = (exp(5.37 * (1 + w(i) * (1 - 1 / tr(i) / pr(i)next iresult = false-do while result = false-迭代相平衡常數(shù)kdim f as double, f1 as double, v as double, v1 as double-用牛頓迭代求vdim newtonv as doublev = 0.7newtonv = 1do while newtonv 0.001 for i = 0 to 11 f = f + n(i) * (k(i) -

24、 1) / (1 + (k(i) - 1) * v) f1 = f1 - n(i) * (k(i) - 1) 2) / (1 + (k(i) - 1) * v) 2) next iv1 = v - f / f1newtonv = abs(v1 - v) / v1)v = v1loopdim xx(11) as double, yy(11) as double-分別求各組分的液相摩爾數(shù)x和氣相摩爾數(shù)yfor i = 0 to 11 xx(i) = n(i) / (1 + (k(i) - 1) * v) yy(i) = n(i) * k(i) / (1 + (k(i) - 1) * v)next

25、idim x0 as double, x(11) as double-液相歸一化處理x0 = 0for i = 0 to 11 x0 = x0 + xx(i)next ifor i = 0 to 11 x(i) = xx(i) / x0next idim y0 as double, y(11) as double- 氣相歸一化處理y0 = 0for i = 0 to 11 y0 = y0 + yy(i)next ifor i = 0 to 11 y(i) = yy(i) / y0next idim r as double-計算pr狀態(tài)方程系數(shù)ai,bi,am,bm,am,bmr = 82.06

26、dim a(11) as double, b(11) as doublefor i = 0 to 11 a(i) = 0.45724 * (r 2) * (tc(i) 2) / pc(i) b(i) = 0.0778 * r * tc(i) / pc(i)next idim (11) as double, m(11) as doublefor i = 0 to 11 m(i) = 0.37464 + 1.54226 * w(i) - 0.26992 * (w(i) 2) (i) = (1 + m(i) * (1 - tr(i) 0.5) 2next idim aml as double, bm

27、l as double-液相混合物的平均引力系數(shù)am、平均斥力系數(shù)bmaml = 0bml = 0for i = 0 to 11 for j = 0 to 11 aml = aml + x(i) * x(j) * (a(i) * a(j) * (i) * (j) 0.5 * (1 - kij(i, j) next jnext ifor i = 0 to 11 bml = bml + x(i) * b(i)next idim amg as double, bmg as double-氣相混合物的平均引力系數(shù)am、平均斥力系數(shù)bm amg = 0bmg = 0for i = 0 to 11 for

28、 j = 0 to 11 amg = amg + y(i) * y(j) * (a(i) * a(j) * (i) * (j) 0.5 * (1 - kij(i, j) next jnext ifor i = 0 to 11 bmg = bmg + y(i) * b(i)next idim ag as double, bg as double-氣相zv-計算氣、液相的偏差系數(shù)zv、zlag = amg * p / (r 2 * t 2)bg = bmg * p / (r * t)dim zg0 as double, zg1 as doublezg0 = 0anther = 1do while

29、anther 0.0001 g = zg0 3 - (1 - bg) * zg0 2 + (ag - 2 * bg - 3 * bg 2) * zg0 - (ag * bg - bg 2 - bg 3) g1 = 3 * zg0 2 - 2 * (1 - bg) * zg0 + (ag - 2 * bg - 3 * bg 2) zg1 = zg0 - g / g1 anther = abs(zg1 - zg0) / zg1) zg0 = zg1loopdim zv as doublezv = zg0dim al as double, bl as double-液相zl -計算氣、液相的偏差系數(shù)

30、zv、zlal = aml * p / (r 2 * t 2)bl = bml * p / (r * t)dim zl0 as double, zl1 as doublezl0 = 0other = 1do while other 0.0001 h = zl0 3 - (1 - bl) * zl0 2 + (al - 2 * bl - 3 * bl 2) * zl0 - (al * bl - bl 2 - bl 3) h1 = 3 * zl0 2 - 2 * (1 - bl) * zl0 + (al - 2 * bl - 3 * bl 2) zl1 = zl0 - h / h1 other =

31、 abs(zl1 - zl0) / zl1) zl0 = zl1loopdim zl as doublezl = zl0dim (11) as double-氣相fig-氣、液相中各組分逸度fig、filfor i = 0 to 11 (i) = 0 for j = 0 to 11 (i) = (i) + y(j) * (a(i) * a(j) * (i) * (j) 0.5) * (1 - kij(i, j) next jnext idim fg(11) as doublefor i = 0 to 11 fg(i) = y(i) * p * exp(b(i) / bmg * (zv - 1)

32、 - log(zv - bg) - ag / (2 * 2 0.5 * bg) * (2 * (i) / amg - b(i) / bmg) * log(zv + 2.414 * bg) / (zv - 0.414 * bg) / (2 * bg * 2 0.5)next idim (11) as double-液相fil -氣、液相中各組分逸度fig、filfor i = 0 to 11 (i) = 0 for j = 0 to 11 (i) = (i) + x(j) * (a(i) * a(j) * (i) * (j) 0.5) * (1 - kij(i, j) next jnext id

33、im fl(11) as doublefor i = 0 to 11 fl(i) = x(i) * p * exp(b(i) / bml * (zl - 1) - log(zl - bl) - al / (2 * 2 0.5 * bl) * (2 * (i) / aml - b(i) / bml) * log(zl + 2.414 * bl) / (zl - 0.414 * bl) / (2 * bl * 2 0.5)next idim k1(11) as double-牛頓迭代調(diào)整平衡常數(shù)for i = 0 to 11 k1(i) = k(i) * fl(i) / fg(i)next i f

34、or i = 0 to 11 k(i) = k1(i)next i-判斷逸度系數(shù)是否滿足條件result = (abs(fl(0) - fg(0) = 0.001) and (abs(fl(1) - fg(1) = 0.0001) and (abs(fl(2) - fg(2) = 0.01) and (abs(fl(3) - fg(3) = 0.001) and (abs(fl(4) - fg(4) = 0.001) and (abs(fl(5) - fg(5) = 0.001) and (abs(fl(6) - fg(6) = 0.001) and (abs(fl(7) - fg(7) =

35、0.001) and (abs(fl(8) - fg(8) = 0.001) and (abs(fl(9) - fg(9) = 0.001) and (abs(fl(10) - fg(10) = 0.001) and (abs(fl(11) - fg(11) 0.001 for i = 0 to 11 f = f + n(i) * (k(i) - 1) / (1 + (k(i) - 1) * v) f1 = f1 - n(i) * (k(i) - 1) 2) / (1 + (k(i) - 1) * v) 2) next iv1 = v - f / f1newtonv = abs(f1 - f)

36、v = v1loopend sub2.3泡點計算 泡點壓力計算步驟同露點壓力類似,只需把x(i) = n(i) / k(i);y(i) = n(i)換成y(i) = n(i) * k(i);x(i) = n(i)即可,此處不再贅述。3.天然氣兩相管流壓力計算(mukherjeebrill模型)1985年mukherjee和brill在beggsbrill(1973)究工作的基礎(chǔ)上,改進實驗條件,對傾斜管兩相流進行了深入的研究,提出了適用于傾斜管及垂直管兩相流應用方便的持液率及摩阻系數(shù)經(jīng)驗公式。這是目前不僅適用于垂直管,同時也適用于水平傾斜管的兩相管流方面較全面的研究成果。m-b模型的壓力梯度方

37、程為: mukherjeebrill持液率公式共有三個:一個用于水平流;另外兩個用分別用于下降的分層流和其它流型。mukherjeebrill持液率形式簡單,只是控制流型的三個無因次變量的函數(shù)。 式中管斜角(與水平方向的夾角);無因次液相粘度: 無因次液相速度: 無因次氣相速度: 用mukherjeebrill確定摩阻系數(shù)時,需判別其流態(tài),對于定向井,流體是向上或水平流動的,流態(tài)主要為泡流段塞流和霧狀流,其流態(tài)判別式為: 若,則為泡流段塞流,兩相摩阻系數(shù)為無滑脫摩阻系數(shù); 無滑脫雷諾數(shù):無滑脫混合物密度: 無滑脫混合物粘度:無滑脫持液率:若,則為霧狀流,兩相摩阻系數(shù)為相對持液率和無滑脫摩阻系數(shù)

38、的函數(shù),即: 程序框圖如下:部分代碼如下:dim c1 as double, c2 as double, c3 as double, c4 as double, c5 as double, c6 as doubleprivate sub option1_click()-m-b持液率公式回歸系數(shù) c1 = -0.380113 c2 = 0.129875 c3 = -0.119788 c4 = 2.343227 c5 = 0.475686 c6 = 0.288657end subprivate sub option2_click() c1 = -1.330282 c2 = 4.808139 c3

39、= 4.171584 c4 = 56.262268 c5 = 0.079951 c6 = 0.504887end subprivate sub option3_click() c1 = -0.516644 c2 = 0.789805 c3 = 0.551627 c4 = 15.519214 c5 = 0.371771 c6 = 0.393952end subprivate sub command1_click()-定義以及輸入需要的基本參數(shù)const as double = 0.06const g as double = 9.81const pi as double = 3.141592653const e as double = 0.000016 管壁絕對粗糙度dim p0 as double, t0 as double, gt as double, d as double, qsc as double, ql as double, ug as

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論