版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2016 至 2017 學年下學期人教版 小學數(shù)學六年級下冊總復(fù)習知 識點總結(jié)人教版小學數(shù)學六年級下冊總復(fù)習知識點第一部分【常用的數(shù)量關(guān)系】1、每份數(shù)份數(shù) =總數(shù); 總數(shù)每份數(shù) =份數(shù) ; 總數(shù)份數(shù) =每份數(shù)2、 速度時間 =路程 ;3、 單價數(shù)量 =總價;路程速度 =時間 ;總價單價 =數(shù)量 ;路程時間 =速度總價數(shù)量 =單價4、工作效率工作時間 =工作總量;工作總量工作時間 =工作效率;工作總量工作效率 =工作時間;5、 加數(shù)+加數(shù)=和;6、 被減數(shù) -減數(shù)=差;和-一個加數(shù)=另一個加數(shù)被減數(shù) -差=減數(shù);差+減數(shù)=被減數(shù)7、因數(shù)因數(shù) =積;積一個因數(shù) =另一個因數(shù)8、被除數(shù)除數(shù) =商 ;
2、被除數(shù)商 =除數(shù);商除數(shù) =被除數(shù)第二部分【小學數(shù)學圖形計算公式】1、正方形( c:周長, s:面積,a:邊長)周長=邊長4;面積=邊長邊長;2、正方體( v:體積,c=4as=aaa:棱長)表面積 =棱長棱長6;體積=棱長棱長棱長;3、長方形( c:周長, s:面積,s 表=aa6v= aaaa:邊長, b:寬 )周長=(長+寬)2;c=2(a+b)面積=長寬 ;s=ab4、長方體( v:體積,s:面積,a:長,b:寬,h:高)(1)表面積=(長寬+長高+寬高)2;s=2(ab+ah+bh)(2)體積=長寬高;v=abh5、三角形( s:面積,a:底, h:高)面積=底高2 ;三角形的高 =
3、面積2底6、平行四邊形( s:面積,s=ah2三角形的底 =面積2高 a:底, h:高)面積=底高;s=ah7、梯形( s:面積, a:上底, b:下底,h:高)面積=(上底+下底)高2;s=(a+b)h28、圓形( s:面積, c:周長,:圓周率, d:直徑, r:半徑 )(1)周長=直徑 =2半徑; (2)面積=半徑半徑;c=d=2rs= r29、圓柱體( v:體積, s:底面積, c:底面周長, h:高, r:底面半徑 ) (1)側(cè)面積=底面周長高=ch=dh=2rh(2) 表面積=側(cè)面積+底面積2(3) 體積=底面積高10、圓錐體(v:體積, s:底面積, h:高, r:底面半徑 )體
4、積=底面積高311、 總數(shù)總份數(shù) =平均數(shù)12、 相遇問題: 相遇路程=速度和相遇時間;相遇時間 =相遇路程速度和;速度和 =相遇路程相遇時間13、利潤與折扣問題: 利潤=售出價-成本;利潤率 =利潤成本100%;利息=本金利率時間;漲跌金額 =本金漲跌百分比;稅后利息=本金利率時間( 1-利息稅)第三部分【常用單位換算】(一)長度單位換算1 千米=1000 米; 1 米=10 分米; 1 分米=10 厘米;1 米=100 厘米;1 厘米=10 毫 米(二)面積單位換算:1 平方米=100 平方分米;1 平方千米 =100 公頃;1 平方分米 =100 平方厘米;1 公頃 =10000 平方米
5、;1 平方厘米 =100 平方毫米(三)體積(容積)單位換算: 1 立方米=1000 立方分米; 1 立方分米=1000 立方厘 米;1 立方分米=1 升;1 立方厘米 =1 毫升;1 立方米=1000 升(4) 重量單位換算:(5) 人民幣單位換算:(6) 時間單位換算:1 噸=1000 千克;1 元=10 角;1 世紀=100 年;1 千克=1000 克;1 角=10 分; 1 年=12 月;1 千克=1 公斤1 元=100 分【大月(31 天)有:1、3、5、7、8、10、12 月】; 【小月(30 天)有:4、6、9、11 月】【平年:2 月有 28 天;全年有 365 天】; 【閏年
6、: 2 月有 29 天;全年有 366 天】1 日=24 小時;1 時=60 分=3600 秒;1 分=60 秒;第四部分【基 本 概 念】第一章 數(shù)和數(shù)的運算 一、概念(一)整 數(shù)1.自然數(shù)、負數(shù)和整數(shù)(1)、自然數(shù) :我們在數(shù)物體的時候,用來表示物體個數(shù)的 1,2,3叫做自然數(shù)。 一個物體也沒有,用 0 表示。0 也是自然數(shù)。1 是自然數(shù)的基本單位,任何一個自然數(shù)都是由若干個 1 組成。0 是最小的自然數(shù),沒有最大的自然數(shù)。(2)、負數(shù):在正數(shù)前面加上“ -”的數(shù)叫做負數(shù),“-”叫做負號。正整數(shù)( 1、2、3、4、)(3)整 數(shù)零 (0 既不是正數(shù),也不是負數(shù) )負整數(shù)( -1、-2、-3
7、、-4)2、零的作用(1) 表示數(shù)位。讀寫數(shù)時,某個單位上一個單位也沒有,就用 0 表示。(2) 占位作用。(3) 作為界限。如“零上溫度與零下溫度的界限”。3、計數(shù)單位 :一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數(shù)單 位。每相鄰兩個計數(shù)單位之間的進率都是 10。這樣的計數(shù)法叫做十進制計數(shù)法。4、 數(shù)位 :計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。5、 數(shù)的整除 :整數(shù) a 除以整數(shù) b(b 0),除得的商是整數(shù)而沒有余數(shù),我們就說 a 能被 b 整除,或者說 b 能整除 a 。(1)如果數(shù) a 能被數(shù) b(b 0)整除,a 就叫做 b 的倍數(shù),b 就叫做 a 的約數(shù)
8、(或 a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。 如:因為 35 能被 7 整除,所以 35 是 7 的倍數(shù), 7 是 35 的約數(shù)。(2)一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是 1,最大的 約數(shù)是它本身。例如:10 的約數(shù)有 1、2、5、10,其中最小的約數(shù)是 1,最大的約數(shù)是 10。(3)一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。如:3 的倍數(shù)有:3、6、9、12其中最小的倍數(shù)是 3 ,沒有最大的倍數(shù)。(4) 個位上是 0、2、4、6、8 的數(shù),都能被 2 整除,例如:202、480、304,都能被 2 整除。(5) 個位上是 0 或 5 的數(shù),都能被 5 整除,例如:5、30、
9、405 都能被 5 整除。 (6)一個數(shù)的各位上的數(shù)的和能被 3 整除,這個數(shù)就能被 3 整除,例如:12、108、204 都能被 3 整除。(7) 一個數(shù)各位數(shù)上的和能被 9 整除,這個數(shù)就能被 9 整除。(8) 能被 3 整除的數(shù)不一定能被 9 整除,但是能被 9 整除的數(shù)一定能被 3 整除。(9) 一個數(shù)的末兩位數(shù)能被 4(或 25)整除,這個數(shù)就能被 4(或 25)整除。 例如:16、404、1256 都能被 4 整除,50、325、500、1675 都能被 25 整除。(10) 一個數(shù)的末三位數(shù)能被 8(或 125)整除,這個數(shù)就能被 8(或 125)整除。例如:1168、4600、
10、5000、12344 都能被 8 整除,1125、13375、5000 都能被 125 整除。 (11)能被 2 整除的數(shù)叫做偶數(shù)。不能被 2 整除的數(shù)叫做奇數(shù)。0 也是偶數(shù)。自然數(shù)按能否被 2 整除的特征可分為奇數(shù)和偶數(shù)。(12)一個數(shù),如果只有 1 和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù))。100 以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、 59、61、67、71、73、79、83、89、97。(13)一個數(shù),如果除了 1 和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。例如 4、6、8、9、12 都是合數(shù)。(14)1 不是質(zhì)數(shù)也不是
11、合數(shù),自然數(shù)除了 1 外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù) 按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和 1。(15) 每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù), 叫做這個合數(shù)的質(zhì)因數(shù),例如 15=35,3 和 5 叫做 15 的質(zhì)因數(shù)。(16) 把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。 例如:把 28 分 解質(zhì)因數(shù)(17) 幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。例如:12 的約數(shù)有 1、2、3、4、6、12;18 的約數(shù)有 1、2、3、6、9、18。其中,1、2、3、6 是 12 和 1 8 的公約數(shù),6 是
12、它們的最大公約數(shù)。(18)公約數(shù)只有 1 的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:1 和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。 兩個不同的質(zhì)數(shù)互質(zhì)。 當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。5 兩個合數(shù)的公約數(shù)只有 1 時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就 說這幾個數(shù)兩兩互質(zhì)。6 如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。7 如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是 1。(19)幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù) 的最小公倍數(shù),如: 2 的倍數(shù)有 2、4、6 、8、10、12、14、16、18 3
13、的倍數(shù)有 3、6、9、12、15、18 其中 6、12、18是 2、3 的公倍數(shù),6 是它們的最小公倍數(shù)。1 如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。2 如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。3 幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。(二)小數(shù)1 、小數(shù)的意義(1) 把整數(shù) 1 平均分成 10 份、100 份、1000 份 得到的十分之幾、百分之幾、千 分之幾 可以用小數(shù)表示。(2) 一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾(3) 一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小 數(shù)
14、點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。(4) 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是 10。小數(shù)部分的最高分數(shù)單位 “十分之一”和整數(shù)部分的最低單位“一”之間的進率也是 10。2、小數(shù)的分類(1) 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。(2) 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小 數(shù)。(3) 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如: 41.7 、 25.3 、 0.23 都是有限小數(shù)。(4)無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如: 4.33 3.
15、1415926 (5) 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù) 叫做無限不循環(huán)小數(shù)。 例如:(6) 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這 個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 0.0333 12.109109 (7) 一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如: 3.99 的循環(huán)節(jié)是“ 9 ” , 0.5454 的循環(huán)節(jié)是“ 54 ” 。 (8)純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如: 3.111 0.5656 (9)混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混
16、循環(huán)小數(shù)。例如: 3.1222 0.03333 (10)寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有 一個數(shù)字,就只在它的上 面點一個點。例如: 3.777 簡寫作:3.7() ; 0.5302302 簡寫作:0.53()02() 。 (三)分數(shù)1、分數(shù)的意義(1) 把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。(2) 在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1” 平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。(3) 把單位“1”平均分成若干份,表示其中的一
17、份的數(shù),叫做分數(shù)單位。2、分數(shù)的分類真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于 1。假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于 1。帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。3、約分和通分把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。(四)百分數(shù) :表示一個數(shù)是另一個數(shù)的百分之幾的數(shù) 叫做百分數(shù),也叫做百分率 或百分比。 百分數(shù)通常用 %來表示。百分號是表示百分數(shù)的符號。二 、方法(一)數(shù)的讀法和寫法1、整數(shù)的讀法:從高位到低
18、位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的 0 都不讀出來,其它數(shù)位連 續(xù)有幾個 0 都只讀一個零。2、 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在 那個數(shù)位上寫 0。3、 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小 數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。4、 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下 角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。5、 分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù) 的讀法來讀。6、 分數(shù)
19、的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。7、 百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù) 的讀法來讀。8、 百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%” 來表示。(二)數(shù)的改寫一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。 有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。1、準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù) 是 125430 萬;改寫成 以億做單位
20、的數(shù) 12.543 億。2、近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。3、四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是 4 或者比 4 小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是 5 或者比 5 大,就把尾數(shù)舍去,并向它的前一位進 1。例如:省略 345900 萬后面的尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù)約是 47 億。 4、大小比較(1)比較整數(shù)大?。罕容^整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下
21、一位,哪一位上的 數(shù)大那個數(shù)就大。(2)比較小數(shù)的大?。合瓤此鼈兊恼麛?shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的 那個數(shù)就大( 3)比較分數(shù)的大小 : 分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。 (三)數(shù)的互化1、 小數(shù)化成分數(shù):原來有幾位小數(shù),就在 1 的后面寫幾個零作分母,把原來的小數(shù)去 掉小數(shù)點作分子,能約分的要約分。2、 分數(shù)化成小數(shù):用分母去除以分子。能除盡的就化成有限小數(shù),有的不能除盡,不 能化成有限小數(shù)的,一般保留三位小數(shù)。3、 一
22、個最簡分數(shù),如果分母中除了 2 和 5 以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有 2 和 5 以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。 4、小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。5、 百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動 兩位。6、 分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù) ) ,再把小數(shù)化成百分數(shù)。7、百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。(四)數(shù)的整除1、 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除 到商是質(zhì)數(shù)為止,再把除數(shù)
23、和商寫成連乘的形式。2、 求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù) 1 為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大 公約數(shù) 。3、求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這 幾個數(shù)的最小公倍數(shù)。4、成為互質(zhì)關(guān)系的兩個數(shù): 1 和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì);當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公約數(shù)只有 1 時,這兩 個合數(shù)互質(zhì)。(五)約分和通分(1) 約分的方法:用分子和分母的公約數(shù)( 1
24、除外)去除分子、分母;通常要除到得 出最簡分數(shù)為止。(2) 通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這 個最小公倍數(shù)作分母的分數(shù)。三、性質(zhì)和規(guī)律(一)商不變的規(guī)律商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。 (二)小數(shù)的性質(zhì)小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。(三)小數(shù)點位置的移動引起小數(shù)大小的變化1、 小數(shù)點向右移動一位,原來的數(shù)就擴大 10 倍;小數(shù)點向右移動兩位,原來的數(shù)就 擴大 100 倍;小數(shù)點向右移動三位,原來的數(shù)就擴大 1000 倍2、 小數(shù)點向左移動一位,原來的數(shù)就縮小 10 倍;小數(shù)點向左移動兩位,
25、原來的數(shù)就 縮小 100 倍;小數(shù)點向左移動三位,原來的數(shù)就縮小 1000 倍3、 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“ 0補足位。(四)分數(shù)的基本性質(zhì)分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小 不變。(五)分數(shù)與除法的關(guān)系1、 被除數(shù)除數(shù) = 商2、 因為零不能作除數(shù),所以分數(shù)的分母不能為零。3、 被除數(shù)相當于分子,除號相當于分數(shù)線,除數(shù)相當于分母,商相當于分數(shù)值。 四、運算的意義(一)整數(shù)四則運算1、整數(shù)加法:把兩個數(shù)合并成一個數(shù)的運算叫做加法。在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。加數(shù)+加數(shù)=和一個加數(shù)=和另一個加數(shù)2、
26、整數(shù)減法:已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。 被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。加法和減法互為逆運算。3、整數(shù)乘法:求幾個相同加數(shù)的和的簡便運算叫做乘法。在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。在乘法里,0 和任何數(shù)相乘都得 0;一個因數(shù) 一個因數(shù) =積;1 和任何數(shù)相乘都的任何數(shù)。一個因數(shù) =積另一個因數(shù)4、整數(shù)除法:已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。 乘法和除法互為逆運
27、算。在除法里,0 不能做除數(shù)。被除數(shù)除數(shù)=商除數(shù) =被除數(shù)商被除數(shù) =商除數(shù)(二)小數(shù)四則運算1、 小數(shù)加法:小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運 算。2、 小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一 個加數(shù),求另一個加數(shù)的運算 .3、 小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是 多少。4、 小數(shù)除法:小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中 一個因數(shù),求另一個因數(shù)的運算。5、 乘方 : 求幾個相同因數(shù)的積的運算叫做乘
28、方。例如 3 3 =32(三)分數(shù)四則運算1、 分數(shù)加法:分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的 運算。2、 分數(shù)減法:分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一 個加數(shù),求另一個加數(shù)的運算。3、 分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。4、 乘積是 1 的兩個數(shù)叫做互為倒數(shù)。5、 分數(shù)除法:分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中 一個因數(shù),求另一個因數(shù)的運算。(四)運算定律1、 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即 a+b=b+a 。2、 加法結(jié)合律:三個數(shù)相加,先把
29、前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個 數(shù)相加,再和第一個數(shù)相加它們的和不變,即( a+b)+c=a+(b+c) 。3、 乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即 ab=ba。4、 乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個 數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即 (ab)c=a(bc) 。5、 乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩 個積相加,即(a+b)c=ac+bc 。6、減法的性質(zhì):從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差 不變,即 a-b-c=a-(b+c) 。(五)運算法則1
30、、 整數(shù)加法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前 一位進一。2、 整數(shù)減法計算法則:相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的 前一位退一作十,和本位上的數(shù)合并在一起,再減。3、 整數(shù)乘法計算法則:先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。4、整數(shù)除法計算法則:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一 位上不夠商 1,要補“ 0”占位。每次除得的余數(shù)要小于除數(shù)。5、 小數(shù)乘
31、法法則:先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就 從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“ 0”補足。6、 除數(shù)是整數(shù)的小數(shù)除法計算法則:先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“ 0”,再繼續(xù) 除。7、除數(shù)是小數(shù)的除法計算法則:先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“ 0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。8、 同分母分數(shù)加減法計算方法 :同分母分數(shù)相加減,只把分子相加減,分母不變。9、 異分母分數(shù)加減法計算方法 : 先通分,然后按照同分母分數(shù)加減法的的
32、法則進行計 算。10、 帶分數(shù)加減法的計算方法:整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起 來。11、 分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不 變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。12、 分數(shù)除法的計算法則 :甲數(shù)除以乙數(shù)( 0 除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。(六)運算順序1、 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。2、 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。3、 沒有括號的混合運算:同級運算從左往右依次運算;兩級運算 先算乘、除法,后算 加減法。4、有括號的混合運算 :先算小括號里面的,再算中括號里面的,最后算括號
33、外面的。 5、第一級運算:加法和減法叫做第一級運算。6、第二級運算:乘法和除法叫做第二級運算。(一)整數(shù)的應(yīng)用(1)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵 樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植 樹還是沿周長植樹,然后按基本公式進行計算。解題規(guī)律:a.沿線段植樹棵樹=段數(shù)+1株距=總路程(棵樹 -1)棵樹 =總路程株距+1總路程 =株距(棵樹-1)b.沿周長植樹棵樹=總路程株距株距=總路程棵樹總路程=株距棵樹例: 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來全部改
34、裝, 只埋了 201 根。求改裝后每相鄰兩根的間距。分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為: 50 ( 301-1 )( 201-1 ) =75 (米)(12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應(yīng)用題被稱為“年 齡問題”。解題關(guān)鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不 變”的問題,解題時,要善于利用差不變的特點。例: 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是
35、兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾 年前父親的年齡是兒子的 4 倍。列式為: 21-( 48-21 )( 4-1 ) =12 (年)(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一 類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動物(如全是“雞”或全是 “兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。解題規(guī)律:(總腿數(shù)雞腿數(shù)總頭數(shù))一只雞兔腿數(shù)的差 =兔子只數(shù)兔子只數(shù)=(總腿數(shù)-2總頭數(shù))2如果假設(shè)全是兔子,可以有下面的式子:雞的只數(shù)=(4總頭數(shù)
36、-總腿數(shù))2兔的頭數(shù)=總頭數(shù)-雞的只數(shù)例: 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?兔子只數(shù):( 170-2 50 ) 2 =35 (只)雞的只數(shù): 50-35=15 (只)(二)分數(shù)和百分數(shù)的應(yīng)用1、 分數(shù)加減法應(yīng)用題:分數(shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系 和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。2、 分數(shù)乘法應(yīng)用題:是指已知一個數(shù),求它的幾分之幾是多少的應(yīng)用題。特征:已知單位“1”的量和分率,求與分率所對應(yīng)的實際數(shù)量。解題關(guān)鍵:準確判斷單位“1”的量。找準要求問題所對應(yīng)的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。3、分數(shù)除法應(yīng)用題:(
37、1)求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾。“一個數(shù)”是比較量,“另一個數(shù)”是標準量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。解題關(guān)鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了“單位一”,誰和單 位一的量作比較,誰就作被除數(shù)。甲是乙的幾分之幾(百分之幾) :甲是比較量,乙是標準量,用甲除以乙。甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之 幾)。關(guān)系式:(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。(2)已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。特征:已知一個實際數(shù)量和它
38、相對應(yīng)的分率,求單位“ 1”的量。解題關(guān)鍵:準確判斷單位“ 1”的量把單位“1”的量看成 x 根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應(yīng)的已知實際數(shù)量。 4、百分率:發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)100%小麥的出粉率= 面粉的重量/小麥的重量100%產(chǎn)品的合格率=合格的產(chǎn)品數(shù) /產(chǎn)品總數(shù)100%職工的出勤率=實際出勤人數(shù) /應(yīng)出勤人數(shù)100%5、工程問題:是分數(shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討 工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應(yīng)用題。解題關(guān)鍵:把工作總量看作單位“ 1”,工作效率就是工作時間的倒數(shù),然后根據(jù)題目
39、的具體情況,靈活運用公式。數(shù)量關(guān)系:工作總量 =工作效率工作時間工作效率=工作總量工作時間工作時間=工作總量工作效率工作總量工作效率和 =合作時間6、納稅:納稅就是把根據(jù)國家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收 入的一部分繳納給國家。繳納的稅款叫應(yīng)納稅款。應(yīng)納稅額與各種收入的(銷售額、營業(yè)額、應(yīng)納稅所得額 )的比率叫做稅率。 7、利息:存入銀行的錢叫做本金。取款時銀行多支付的錢叫做利息。利息與本金的比值叫做利率。利息=本金利率時間第二章 度量衡一、長度(1) 什么是長度:長度是一維空間的度量。(2) 長度常用單位:公里(km) 、米(m) 、分米(dm) 、厘米(cm) 、毫米(m
40、m) 、微米 (um)(三) 單位之間的換算: 1 毫米 1000 微米;1 厘米10 毫米;1 分米 10 厘米;1 米 1000 毫米; 1 千米1000 米;二、面積(一)什么是面積面積,就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱表面積。 (二)常用的面積單位平方毫米、平方厘米、平方分米、平方米、平方千米(三)面積單位的換算: 1 平方厘米100 平方毫米;1 平方分米 =100 平方厘米 ;1 平方米 100 平方分米;1 公傾 10000 平方米;1 平方公里 100 公頃;三、體積和容積(一)什么是體積、容積體積就是物體所占空間的大小。容積是指箱子、油桶、倉庫等所能
41、容納物體的體積,通常叫做它們的容積。 (二)常用單位1、體積單位: 立方米、立方分米、立方厘米2、容積單位:(三)單位換算升、毫升1、體積單位:1 立方米=1000 立方分米;1 立方分米 =1000 立方厘米;2、容積單位:1 升=1000 毫升;1 升=1 立方米;1 毫升=1 立方厘米四、質(zhì)量(一)什么是質(zhì)量:質(zhì)量是指表示表示物體有多重。(二)常用單位: 噸(t)、千克(kg)、克(g)(三)常用換算: 一噸=1000 千克;1 千克 =1000 克五、時間(一)什么是時間:是指有起點和終點的一段時間。(二)常用單位:世紀、 年 、 月 、 日 、 時 、 分、 秒。(三)單位換算: 1
42、 世紀=100 年;1 年=365 天( 平年 );1 年=366 天( 閏年 );一、三、五、七、八、十、十二是大月;大月有 31 天。 四、六、九、十一是小月小月;小月有 30 天。平年 2 月有 28 天; 閏年 2 月有 29 天。1 天= 24 小時;1 小時=60 分;1 分=60 秒;六、人民幣(一)常用單位:元、角、 分(二)單位換算:1 元=10 角;1 角=10 分七、同一類計量單位之間的換算1、名數(shù):在數(shù)的后面附有計量單位的數(shù)叫做名數(shù)。如: 3 厘米,50 千克,2.5 小時等 都是名數(shù)。(1) 單名數(shù):只帶有一個計量單位的名數(shù)叫做單名數(shù)。如: 8.7 噸,17.3 升等
43、都是單 名數(shù)。(2) 復(fù)名數(shù):帶有兩個或兩個以上同類計量單位的名數(shù)叫做復(fù)名數(shù)。如 1 元 5 角;6 平方米 8 平方分米;9 小時 30 分 39 秒等都是復(fù)名數(shù)。2、轉(zhuǎn)換(1)高級單位低級單位的方法:高級單位的數(shù)進率如: 3 立方米=(3000)立方分米;2.5 立方分米=(2500)立方厘米;方法是: 31000=3000方法是 :2.51000=2500(2)低級單位高級單位的方法:低級單位的數(shù)進率如: 4000 立方分米=( 4 ) 立方米;方法是 :40001000=41500 立方厘米=( 1.5 )立方分米;方法是:15001000=1.5第三章 代數(shù)初步知識一、用字母表示數(shù)1
44、、用字母表示數(shù)的意義和作用用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出來,同時也可以表示運算的結(jié)果。 2、用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式(1)常見的數(shù)量關(guān)系路程用 s 表示,速度 v 用表示,時間用 t 表示,三者之間的關(guān)系:s=vt;v=s/t;t=s/v總價用 a 表示,單價用 b 表示,數(shù)量用 c 表示,三者之間的關(guān)系:a=bc;b=a/c ;c=a/b(2)運算定律和性質(zhì)加法交換律:a+b=b+a;加法結(jié)合律:(a+b)+c=a+(b+c);乘法交換律:ab=ba ;乘法結(jié)合律:(ab)c=a(bc) ;乘法分配律:(a+b)c=ac+bc ;減法的性質(zhì):a-
45、(b+c) =a-b-c ;(3)用字母表示幾何形體的公式長方形的長用 a 表示,寬用 b 表示,周長用 c 表示,面積用 s 表示。 c=2(a+b)s=ab正方形的邊長 a 用表示,周長用 c 表示,面積用 s 表示。c=4a ;s=a2平行四邊形的底 a 用表示,高用 h 表示,面積用 s 表示。s=ah三角形的底用 a 表示,高用 h 表示,面積用 s 表示。s=ah/2梯形的上底用 a 表示,下底 b 用表示,高用 h 表示,中位線用 m 表示,面積用 s 表 示。s=(a+b)h/2 ; s=mh圓的半徑用 r 表示,直徑用 d 表示,周長用 c 表示,面積用 s 表示。c=d=2
46、r ; s=r2扇形的半徑用 r 表示,n 表示圓心角的度數(shù),面積用 s 表示。s=nr2/3608 長方體的長用 a 表示,寬用 b 表示,高用 h 表示,表面積用 s 表示,體積用 v 表示。 v=sh ; s=2(ab+ah+bh) ; v=abh9 正方體的棱長用 a 表示,底面周長 c 用表示,底面積用 s 表示, 體積用 v 表示.s=6a2;v=a2圓柱的高用 h 表示,底面周長用 c 表示,底面積用 s 表示, 體積用 v 表示. s 側(cè)=ch ; s 表=s 側(cè)+2s 底 ;v=sh11 圓錐的高用 h 表示,底面積用 s 表示, 體積用 v 表示.v=sh/33、用字母表示
47、數(shù)的寫法(1) 數(shù)字和字母、字母和字母相乘時,乘號可以記作“ .”,或者省略不寫,數(shù)字要寫 在字母的前面。(2) 當“1”與任何字母相乘時,“1”省略不寫。(3) 在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。(4)用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。 4、將數(shù)值代入式子求值(1) 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原 式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。(2) 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的
48、值也不相同。 二、簡易方程1、方程:含有未知數(shù)的等式叫做方程。(1) 方程是等式,又含有未知數(shù),兩者缺一不可。(2) 方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和已知數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當未知數(shù)為特定 的數(shù)值時,方程才成立 。2、方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。三、解方程:求方程的解的過程叫做解方程。四、列方程解應(yīng)用題1、 列方程解應(yīng)用題的意義:用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。2、 列方程解答應(yīng)用題的步驟:(1) 弄清題意,確定未知數(shù)并用 x 表示;(2) 找出題中的數(shù)量之間的相等關(guān)系;(3)
49、列方程,解方程;(4) 檢查或驗算,寫出答案。3、列方程解應(yīng)用題的方法(1)綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出方程。這是從部分到整體的一種 思維過程,其思 考方向是從已知到未知。(2)分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)式進而列出方程。這是從整體到部分的 一種思維過程,其思考方向是從未知到已知。4、列方程解應(yīng)用題的范圍小學范圍內(nèi)常用方程解的應(yīng)用題:a、 一般應(yīng)用題;b、 和倍、差倍問題;c、 幾何形體的周長、面積、體積計算;a、 分數(shù)、百分數(shù)應(yīng)用題;a、
50、 比和比例應(yīng)用題。五、比和比例1、比的意義和性質(zhì)(1)比的意義: 兩個數(shù)相除又叫做兩個數(shù)的比。“:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。 比的前項除以后項所得的商,叫做比值。同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。比的后項不能是零。根據(jù)分數(shù)與除法的關(guān)系 , 可知比的前項相當于分子 , 后項相當于分母 , 比值相當于分數(shù) 值。(2)比的性質(zhì): 比的前項和后項同時乘上或者除以相同的數(shù)(0 除外),比值不變,這 叫做比的基本性質(zhì)。(3)求比值和化簡比求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小 數(shù)或分數(shù)。根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比, 即前、后項是互質(zhì)的數(shù)。(4)比例尺:圖上距離:實際距離 =比例尺要求會求比例尺 :已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。線段比例尺:在圖上附有一條注有數(shù)目的線段,用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標文件中的運輸說明
- 增長的算法-空手
- 2024年九年級化學上冊 第二單元 課題1 空氣教案 (新版)新人教版
- 2024-2025學年高中數(shù)學 第一章 預(yù)備知識 4 一元二次函數(shù)與一元二次不等式 1.4.3 一元二次不等式的應(yīng)用教案 北師大版必修第一冊
- 2023六年級英語下冊 Unit 8 What′s Your Dream第4課時教案 陜旅版(三起)
- 2024-2025學年新教材高中歷史 第一單元 古代文明的產(chǎn)生與發(fā)展 第1課 文明的產(chǎn)生與早期發(fā)展教學教案 新人教版必修《中外歷史綱要(下)》
- 八年級物理上冊 4.2《探究汽化和液化的特點》教學設(shè)計 (新版)粵教滬版
- 2024-2025學年高中歷史下學期第1周 新中國初期的外交教學設(shè)計
- 易制爆化學品庫管員職責
- 鉆井糾斜技術(shù)服務(wù)合同(2篇)
- 輿情應(yīng)急演練桌面推演
- 湖北省武漢市漢陽區(qū)2024-2025學年九年級上學期期中語文卷
- 中華人民共和國能源法
- 華為近三年財務(wù)分析報告范文
- 《義務(wù)教育數(shù)學課程標準(2022年版)》初中內(nèi)容解讀
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 黑龍江省 哈爾濱市第四十七中學校2024-2025學年七年級上學期期中考試語文試題
- 期中(1-4單元)(試題)-2024-2025學年六年級數(shù)學上冊西師大版
- 人教版小學語文一年級單元測試題-全冊
- 《烏魯木齊市國土空間總體規(guī)劃(2021-2035年)》
- 河南省城市生命線安全工程建設(shè)指引V1
評論
0/150
提交評論