



版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、.專業(yè)整理 .CFD simulation in Laval nozzleSIAE 090441313AbstractWe aim to simulate the quasi one dimension flow in the Lavalnozzle based on CFDcomputationin thispaper .We considerthechange of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution ofth
2、e flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question.Key words :Laval nozzle ,CFD,throat narrow.ContentsAbstract .1Introduction .2Simulationofone-dimensionalsteadyflow.3. 學習幫手 .專業(yè)整理 .Basisequations .3Dime
3、nsionless .10Mac-CormackExplicitDifferenceScheme.11Boundaryconditions .13Reference .13Annex .14IntroductionLaval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube.Laval nozzle is an important part o
4、f the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand. 學習幫手 .專業(yè)整理 .outwards from small to big to the end. The gas in the rocket body by the front half of the high pressure into the nozzle, through the narrow
5、 throat to escape by the rear half. This architecture allows the speed of the air flow changes due to changes in the jet cross-sectional area, the airflow fromsubsonic to the speed of sound, untilacceleratedto transonic.So, people flarednozzle calledtransonicnozzle.Since itwasinvented by the Swedish
6、 Laval, also known as Laval nozzle.Analysis of the principle of the Laval nozzle. The rocketengines of the gas flow in the combustion chamber under pressure,afterthe backward movement of the nozzle into thenozzle .Atthisstage,the gas movementfollowthe principleof thefluidmoves in the tube , the smal
7、l cross-section at the flow rate large sectional large flow velocity, thus accelerating airflow.Laval nozzleWhen you reach the narrow throat, the flow rate has exceeded. 學習幫手 .專業(yè)整理 .the speed of sound. Transonic fluid movement they no longer follow the principle of cross-section at small velocity, a
8、ta flowrate ofsmallcross-section large, but on the contrarythe larger cross-sectional flow faster. The gas flow speed isfurtheracceleratedto 2-3 km / sec,equivalentto 7-8 times thespeed of sound, thuscreatinga greatthrust.The Laval nozzlefact played the role of a flow rate Enlargement Device. Infact
9、,not justrocketengines,missilenozzleis this horn shape,so the Laval nozzle weapons has a very wide range of applications.Simulationofone-dimensionalsteadyflow1.Basis equationsAs we know,Laval nozzle is a zooming nozzle flow channel to narrow further expansion.Allows the airflow to further accelerate
10、 to reach the speed of sound at the throat into a supersonic flow.Now,we want to simulate the quasi one-dimension flowing.Firstly,we will analysis on theory.The flow is isentropic,so we can apply the following equations.(1)Continuity equation:. 學習幫手 .專業(yè)整理 .In the flow, we need to consider the follow
11、ing physical quantities.The pression ,the temperature ,the speed of the fluid and the cross-section .They are respectively represented by P,T,u,A. We apply the conservation of the mass.we will obtain this equation.uA(d)( AdA )( udu )And then we getdAdud0Au(2)Equation of momentum(in the direction of
12、the axis)According to the theory of momentum:uA(u du)uAu PA (PdP)(A dA) (PdP)dA2The simplification of this equation isududP(3)Energy equation2vdhtd (h)dhudu02Ideal gas equation of statePRTMR is ideal gas constant,R=8.314J/g/K.M is the masse per mole. 學習幫手 .專業(yè)整理 .(4)The equation of ThermodynamicsT dS
13、dePdV , h e PV ;TdSdhVdP , dh C p dT ;dSC pdTV dP C pdTR dPTTTPBecause the flow is isentropic,sodS=0And we use the equation of momentum,we haveC pP (T )R( T )1Combine with others equations,we result withu 2RTWe called u the speed of sound,we noted a.a 2RTWe apply the continuity equationdA( uAa221)We
14、 defined the Mach numberuMaIf we have the relation asA1.3980.347 tanh(0.8x4)We have the figure1. 學習幫手 .1) du u.專業(yè)整理 .SodA (M 2 AM1,supersonicIf dA0.If dA0,we have du0.M1,subsonicIf dA0.If dA0,we have du0.This is the reason why this architecture allows the speed ofthe air flow changes due to changes
15、in the jet cross-sectional area, the airflow from subsonic to the speed of sound, until accelerated to transonic. 學習幫手 .專業(yè)整理 .We have the consequence as follows11mAMP ()2( 1)PAMR Ttt12RT1M2TTt; PPt1 M2 )1 M2 )(1(1221Then we replace P and T in this equation.The consequence will become11 M 2Pt AMm2RTt
16、12)1(1M2To simplifyPt11mAM ()2( 1)RTt121 M 2In this equation,the variable is the much number,as the speed of the flow is from subsonic to supersonic ,so we can suppose that there exist a critical section where M equal to 1.ThenA11 M2112)2(1)A(1M2. 學習幫手 .專業(yè)整理 .Figure2This section is called narrow thr
17、oat.The same method,we canobtainT12T11M22P112()1P1M2121(2)11M212. 學習幫手 .專業(yè)整理 .Figure3We know the section in narrow throat is minimum.d ( m ) K (11(1) ( 1)M )(11)2( 1)1M ()2( 1) dM A1M22(1)1M2112we can judge that the function attains the maximum or not11f ( M )M ()2(1)11M222 DimensionlessCombining CF
18、D with one-dimension flow theory,we make the variables dimensionless.According to the condition initial which is given .We note. 學習幫手 .專業(yè)整理 .TT T00uu u 0xx lAAA0tt lu 0We use the variable dimensionless to represent theequations.And the equations have the following changes(1)Continuity equationvt xt
19、v A v 0A x x v v ln A v x x x (2)Equation of momentumvtv 1T T vx (x x )(3)Energy equationTv T1)T ( vvlnA()txxx. 學習幫手 .專業(yè)整理 .3.Mac-Cormack Explicit Difference SchemeThen we use the Mac-Cormack Explicit Difference Scheme,the. 學習幫手 .專業(yè)整理 .principal of this theory is using the surrounding points to pres
20、ent differential parts of a point and we consider thequestion with one dimension.The distance between two points is h.f(x)f 0( x x0 )(f1f 221f 33) 0(x2 ) 0 (xx0 )(3 ) 0 ( xx0 )x2!3!xx1x0hx3x0hh( f ) 0h2f2f1f 0(2 )0x2xh( f ) 0h2f2f3f 0(2 ) 0x2xSo we can use two points adjacent to present the differen
21、tial parts.(f) 0f1f 3x2h(2 ff1f3 2 f02) 0h2xUsing thismethod,we make an estimationand correct the error.Estimationttttt ln Ai 1nAitti 1itvi 1vit( t )ivixixivixcorrect the errort tt tt ttt(ii1)ivitxIntermediate value. 學習幫手 .專業(yè)整理 .t tttii(t) itThen the equation has the following change( ) av1 () it()
22、it t )t2ttAt the moment t ,we will know the value in the whole plan .And we defineticxiviaitmin(t 1t ,t 2t ,t3t ,t 4t ,t 5t . t tN )4.Boundary conditionsHyperbola equation has two characteristics lines.When one ofthecharacteristicslinesentertheflowzone .Weadmitaparameter to be fixed ,otherwise when
23、one of the characteristics go out the flow zone ,we admit a parameter tobe a variable depends the time.Applying this theory ,we can determine the boundary conditions.Reference:1 章利特,高鐵瑜,夏慶鋒,徐廷相 . 拉瓦爾噴管的準一維定常流動 .中國科技論文在線。2 王平,昌平,柏松 . 基于 CFD數(shù)值模擬的拉瓦爾噴管流場分析 . 航空計算技術(shù) 2012 年 7 月第 42 卷第 4 期。3 王如根,瑞賢,全通 . 基
24、于實際發(fā)動機拉瓦爾噴管的流場分析 .99. 學習幫手 .專業(yè)整理 .學術(shù)會議空軍工程學院飛機推進系統(tǒng)實驗室。4 周文祥,黃金泉,周人治 . 拉瓦爾噴管計算模型的改進及其整機仿真驗證 . 航空動力學報 2009 年 11 月第 24 卷第 11 期。5 王克印,韓星星,曉濤,耀鵬,吉潮 . 縮擴型超音速噴管的設(shè)計與仿真 . 中國工程機械學報 2011 年 9 月第 9 卷第 3 期。Annex 1:Figure 1程序:x=0:0.1:5;a=1.398+0.374*tanh(0.8*x-4);plot(x,a)Figure 2程序:gama=1.33;M=0:0.01:2;A=(1./M).*
25、(1+(gama-1).*M.2./2)./(gama+1)./2).(gama+1)./(2.*(gama-1);Xlabel(variable M);ylabel(variable A);Plot(M,A)Figure 3程序:gama=1.33;M=0:0.01:2;T=(gama+1)./2)./(1+(gama-1.).*M.2./2);P=(gama+1)./2)./(1+(gama-1).*M.2./2).(1./(gama-1);rho=(P./T).*(gama-1)./2)./(1+(gama-1).*M.2./2).(gama./(gama-1);x=T;P;rho;y=
26、M;M;plot(M,T,M,P,M,rho);subplot(221);plot(M,T);xlabel(variable M);ylabel(variable T);subplot(222);plot(M,P);xlabel(variable M);ylabel(variable P);subplot(2,2,3:4);plot(M,rho);xlabel(variable M);ylabel(variable rho);模擬程序(未完成) :M1=1.5; %input( 來流馬赫數(shù) M1=);P1=47892.4;%input(來流氣體壓強 P1=);rho1=1.222;%input
27、(來流氣體密度 rho1=);gama=1.4; %input(比熱比 gama=);. 學習幫手 .專業(yè)整理 .R=8.314; %input(氣體常量 R=);C=1.5; %input(科朗數(shù) C=);T1=293; %input(來流氣體溫度 T1=);a1=sqrt(gama*R*T1);V1=M1*a1;L=10;%input(噴管長度 L=);I=300; %input(等分步數(shù) I=);N=1000;%input(時間步數(shù) N=);d_t=0;e=0;delta_x=1/(I-1);A1=1.398-0.347*tanh(4);A=zeros(I,1);V=zeros(I,N)
28、;rho=zeros(I,N);T=zeros(I,N);ahead_V=zeros(I,N);ahead_rho=zeros(I,N);ahead_T=zeros(I,N);ahead_der_V=zeros(I,N);ahead_der_rho=zeros(I,N);ahead_der_T=zeros(I,N);der_V=zeros(I,N);der_rho=zeros(I,N);der_T=zeros(I,N);ave_der_V=zeros(I,N);ave_der_rho=zeros(I,N);ave_der_T=zeros(I,N);delta_t=zeros(I,N);a=ze
29、ros(I,N);e=zeros(I,N);forn=1:Nahead_V(1,n)=M1;ahead_rho(1,n)=1;ahead_T(1,n)=1;V(1,n)=M1;rho(1,n)=1;T(1,n)=1;endfori=1:IV(i,1)=(1.5+1.09*i*delta_x)*sqrt(T(i,1);rho(i,1)=1-0.3146*i*delta_x;T(i,1)=1-0.2314*i*delta_x;A(i,1)=(1.398+0.347*tanh(0.8*(i-1)*delta_x*L-4);endforn=1:Nfori=2:(I-1)der_V(i,n)=-V(i,
30、n)*(V(i+1,n)-V(i,n)/delta_x-1/gama*(T(i+1,n)-T(i,n)/delta_x+ T(i,n)/rho(i,n)*(rho(i+1,n)-rho(i,n)/delta_x);der_rho(i,n)=-rho(i,n)*(V(i+1,n)-V(i,n)/delta_x-V(i,n)*(rho(i+1,n)-rho(i,n)/d elta_x-rho(i,n)*V(i,n)*(log(A(i+1,1)-log(A(i,1)/delta_x;. 學習幫手 .專業(yè)整理 .der_T(i,n)=-V(i,n)*(T(i+1,n)-T(i,n)/delta_x-(
31、gama-1)*T(i,n)*(V(i+1,n)-V(i,n)/delta_x+V(i,n)*(log(A(i+1,1)-log(A(i,1)/delta_x);a(i,n)=sqrt(gama*R*T(i,n)/a1;delta_t(i,n)=C*delta_x/(V(i,n)+a(i,n);endd_t=min(delta_t(i,n);fori=2:1:(I-1)ahead_V(i,n+1)=V(i,n)+der_V(i,n)*d_t;ahead_rho(i,n+1)=rho(i,n)+der_rho(i,n)*d_t;ahead_T(i,n+1)=T(i,n)+der_T(i,n)*d_t;ahe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級下冊數(shù)學教案-長方形的面積-北師大版
- 公司與公司借款合同(2025年版)
- 二年級上冊數(shù)學教案-7.6 動物樂園|北師大版
- (高清版)DB45∕T 203-2022 綠色食品 茶葉生產(chǎn)技術(shù)規(guī)程
- 人教版數(shù)學三年級上冊單元練習卷(易錯題)-第六單元-多位數(shù)乘一位數(shù)(含答案)
- 模擬試卷五(原卷版+解析版)-三年級語文上學期期末全真模擬卷(部編版五四制)
- 第三課 表格的修飾(教學設(shè)計)2023-2024學年四年級下冊信息技術(shù)龍教版
- 2025年甘肅財貿(mào)職業(yè)學院單招職業(yè)適應(yīng)性測試題庫學生專用
- 2025年度實習生實習基地共建實習勞動協(xié)議書
- 2025年度新能源產(chǎn)業(yè)研發(fā)人員招聘與技術(shù)支持協(xié)議
- 2024橋式門式起重機大修項目及其技術(shù)標準
- 部編版七年級歷史下冊全冊導學案
- 酒店住宿投標方案(技術(shù)標)
- 2024風力發(fā)電葉片維保作業(yè)技術(shù)規(guī)范
- 公路工程監(jiān)理工作指導手冊
- 第2課?玩泥巴(課件)科學一年級下冊
- 學校臨聘人員規(guī)范管理自查報告
- 小學數(shù)學課堂有效教學現(xiàn)狀調(diào)查問卷分析報告
- 投訴法官枉法裁判范本
- 食材配送服務(wù)方案投標方案(技術(shù)方案)
- 北京市大興區(qū)2023-2024學年七年級下學期期中考試英語試卷
評論
0/150
提交評論