行列式的定義_第1頁(yè)
行列式的定義_第2頁(yè)
行列式的定義_第3頁(yè)
行列式的定義_第4頁(yè)
行列式的定義_第5頁(yè)
已閱讀5頁(yè),還剩54頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、用消元法解二元線性方程組用消元法解二元線性方程組 .,22221211212111bxaxabxaxa 1 2 :122a ,2212221212211abxaaxaa :212a ,1222221212112abxaaxaa ,得,得兩式相減消去兩式相減消去2x一、二階行列式的引入一、二階行列式的引入;212221121122211baabxaaaa )(,得,得類似地,消去類似地,消去1x,211211221122211abbaxaaaa )(時(shí)時(shí),當(dāng)當(dāng)021122211 aaaa方程組的解為方程組的解為,211222112122211aaaabaabx )(3.2112221121121

2、12aaaaabbax 由方程組的四個(gè)系數(shù)確定由方程組的四個(gè)系數(shù)確定. 由四個(gè)數(shù)排成二行二列(橫排稱行、豎排由四個(gè)數(shù)排成二行二列(橫排稱行、豎排稱列)的數(shù)表稱列)的數(shù)表)4(22211211aaaa)5(42221121121122211aaaaaaaa行行列列式式,并并記記作作)所所確確定定的的二二階階稱稱為為數(shù)數(shù)表表(表表達(dá)達(dá)式式 即即.2112221122211211aaaaaaaad 11a12a22a12a主對(duì)角線主對(duì)角線副對(duì)角線副對(duì)角線2211aa .2112aa 二階行列式的計(jì)算二階行列式的計(jì)算若記若記,22211211aaaad .,22221211212111bxaxabxa

3、xa對(duì)于二元線性方程組對(duì)于二元線性方程組系數(shù)行列式系數(shù)行列式 .,22221211212111bxaxabxaxa,22211211aaaad .,22221211212111bxaxabxaxa,2221211ababd .,22221211212111bxaxabxaxa,22211211aaaad .,22221211212111bxaxabxaxa,2221211ababd .,22221211212111bxaxabxaxa.2211112babad 則二元線性方程組的解為則二元線性方程組的解為,2221121122212111aaaaababddx 注意注意 分母都為原方程組的系數(shù)

4、行列式分母都為原方程組的系數(shù)行列式.2221121122111122aaaababaddx . 12,12232121xxxx求解二元線性方程組求解二元線性方程組解解1223 d)4(3 , 07 112121 d,14 121232 d,21 ddx11 , 2714 ddx22 . 3721 二、三階行列式二、三階行列式333231232221131211)5(339aaaaaaaaa列列的的數(shù)數(shù)表表行行個(gè)個(gè)數(shù)數(shù)排排成成設(shè)設(shè)有有,312213332112322311322113312312332211)6(aaaaaaaaaaaaaaaaaa 333231232221131211aaaaa

5、aaaa(6 6)式稱為數(shù)表()式稱為數(shù)表(5 5)所確定的)所確定的. .323122211211aaaaaa .312213332112322311aaaaaaaaa (1)(1)沙路法沙路法三階行列式的計(jì)算三階行列式的計(jì)算322113312312332211aaaaaaaaa d333231232221131211aaaaaaaaad . .列標(biāo)列標(biāo)行標(biāo)行標(biāo)333231232221131211aaaaaaaaad 333231232221131211aaaaaaaaa332211aaa .322311aaa 注意注意 紅線上三元素的乘積冠以正號(hào),藍(lán)線上三紅線上三元素的乘積冠以正號(hào),藍(lán)線上

6、三元素的乘積冠以負(fù)號(hào)元素的乘積冠以負(fù)號(hào)說(shuō)明說(shuō)明1 對(duì)角線法則只適用于二階與三階行列式對(duì)角線法則只適用于二階與三階行列式322113aaa 312312aaa 312213aaa 332112aaa 如果三元線性方程組如果三元線性方程組 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa的系數(shù)行列式的系數(shù)行列式333231232221131211aaaaaaaaad , 0 利用三階行列式求解三元線性方程組利用三階行列式求解三元線性方程組 2 2. . 三階行列式包括三階行列式包括3!3!項(xiàng)項(xiàng), ,每一項(xiàng)都是位于不同行每一項(xiàng)都是位于不同行,

7、 ,不同列的三個(gè)元素的乘積不同列的三個(gè)元素的乘積, ,其中三項(xiàng)為正其中三項(xiàng)為正, ,三項(xiàng)為三項(xiàng)為負(fù)負(fù). . ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabd 若記若記333231232221131211aaaaaaaaad 或或 121bbb ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabd 記記,3332323222131211aabaabaabd 即即 ;,333323

8、213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaad ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabad 得得 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaad ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,333312

9、3221131112abaabaabad 得得 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa.3323122221112113baabaabaad ,3333123221131112abaabaabad .3323122221112113baabaabaad 則三元線性方程組的解為則三元線性方程組的解為:,11ddx ,22ddx .33ddx 333231232221131211aaaaaaaaad ,3332323222131211aabaabaabd 2-43-122-4-21d 計(jì)計(jì)算算三三階階行行列列式式按對(duì)角線法則,有按

10、對(duì)角線法則,有 d4)2()4()3(12)2(21 )3(2)4()2()2(2411 24843264 .14 . 094321112 xx求解方程求解方程方程左端方程左端1229184322 xxxxd, 652 xx解解得得由由052 xx3.2 xx或或例例4 4 解線性方程組解線性方程組 . 0, 132, 22321321321xxxxxxxxx由于方程組的系數(shù)行列式由于方程組的系數(shù)行列式111312121 d 111 132 121 111 122 131 5 , 0 同理可得同理可得1103111221 d, 5 1013121212 d,10 0111122213 d, 5

11、 故方程組的解為故方程組的解為:, 111 ddx, 222 ddx. 133 ddx 二階和三階行列式是由解二元和三元線性方二階和三階行列式是由解二元和三元線性方程組引入的程組引入的.對(duì)角線法則對(duì)角線法則二階與三階行列式的計(jì)算二階與三階行列式的計(jì)算.2112221122211211aaaaaaaa ,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa 333231232221131211aaaaaaaaa三、小結(jié)三、小結(jié) 使使求一個(gè)二次多項(xiàng)式求一個(gè)二次多項(xiàng)式,xf .283, 32, 01 fff解解設(shè)所求的二次多項(xiàng)式為設(shè)所求的二次多

12、項(xiàng)式為 ,2cbxaxxf 由題意得由題意得 , 01 cbaf , 3242 cbaf ,28393 cbaf得一個(gè)關(guān)于未知數(shù)得一個(gè)關(guān)于未知數(shù) 的線性方程組的線性方程組,cba,又又, 020 d.20,60,40321 ddd得得, 21 dda, 32 ddb13 ddc故所求多項(xiàng)式為故所求多項(xiàng)式為 . 1322 xxxf一、概念的引入一、概念的引入三階行列式三階行列式333231232221131211aaaaaaaaad 322113312312332211aaaaaaaaa 332112322311312213aaaaaaaaa 說(shuō)明說(shuō)明(1)三階行列式共有)三階行列式共有 項(xiàng),即

13、項(xiàng),即 項(xiàng)項(xiàng)6!3(2)每項(xiàng)都是位于不同行不同列的三個(gè)元素的)每項(xiàng)都是位于不同行不同列的三個(gè)元素的乘積乘積(3)每項(xiàng)的正負(fù)號(hào)都取決于位于不同行不同列)每項(xiàng)的正負(fù)號(hào)都取決于位于不同行不同列 的三個(gè)元素的下標(biāo)排列的三個(gè)元素的下標(biāo)排列例如例如322113aaa列標(biāo)排列的逆序數(shù)為列標(biāo)排列的逆序數(shù)為 , 211312 t322311aaa列標(biāo)排列的逆序數(shù)為列標(biāo)排列的逆序數(shù)為 , 101132 t偶排列偶排列奇排列奇排列正號(hào)正號(hào) ,負(fù)號(hào)負(fù)號(hào) .)1(321321333231232221131211 ppptaaaaaaaaaaaa二、二、n階行列式的定義階行列式的定義nnnnnnnppptaaaaaaaa

14、adaaannnn212222111211212.)1(21 記記作作的的代代數(shù)數(shù)和和個(gè)個(gè)元元素素的的乘乘積積取取自自不不同同行行不不同同列列的的階階行行列列式式等等于于所所有有個(gè)個(gè)數(shù)數(shù)組組成成的的由由定義定義).det(ija簡(jiǎn)記作簡(jiǎn)記作的的元元素素稱稱為為行行列列式式數(shù)數(shù))det(ijijaa為這個(gè)排列的逆序數(shù)為這個(gè)排列的逆序數(shù)的一個(gè)排列,的一個(gè)排列,為自然數(shù)為自然數(shù)其中其中tnpppn2121 nnnnppppppppptnnnnnnaaaaaaaaaaaad212121212122221112111 說(shuō)明說(shuō)明1、行列式是一種特定的算式,它是根據(jù)求解方、行列式是一種特定的算式,它是根據(jù)求

15、解方程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需要而程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需要而定義的定義的;2、 階行列式是階行列式是 項(xiàng)的代數(shù)和項(xiàng)的代數(shù)和;n!n3、 階行列式的每項(xiàng)都是位于不同行、不同階行列式的每項(xiàng)都是位于不同行、不同列列 個(gè)元素的乘積個(gè)元素的乘積;nn4、 一階行列式一階行列式 不要與絕對(duì)值記號(hào)相混淆不要與絕對(duì)值記號(hào)相混淆;aa 5、 的符號(hào)為的符號(hào)為nnpppaaa2121 .1t 例例1 1計(jì)算對(duì)角行列式計(jì)算對(duì)角行列式0004003002001000分析分析展開式中項(xiàng)的一般形式是展開式中項(xiàng)的一般形式是43214321ppppaaaa41 p若若, 011 pa從而這個(gè)項(xiàng)為零

16、,從而這個(gè)項(xiàng)為零,所以所以 只能等于只能等于 , 1p4同理可得同理可得1, 2, 3432 ppp解解0004003002001000 432114321 t.24 即行列式中不為零的項(xiàng)為即行列式中不為零的項(xiàng)為.aaaa41322314例例2 2 計(jì)算上計(jì)算上三角行列式三角行列式nnnnaaaaaa00022211211分析分析展開式中項(xiàng)的一般形式是展開式中項(xiàng)的一般形式是.2121nnpppaaa,npn , 11 npn, 1, 2, 3123 ppnpn所以不為零的項(xiàng)只有所以不為零的項(xiàng)只有.2211nnaaannnnaaaaaa00022211211 nnntaaa2211121 .22

17、11nnaaa 解解例例3?8000650012404321 d443322118000650012404321aaaad .1608541 同理可得同理可得下三角行列式下三角行列式nnnnnaaaaaaa32122211100000.2211nnaaa n 21 .12121nnn ;21n n 21例例4 4 證明證明對(duì)角行列式對(duì)角行列式n 21 11,212111nnnnntaaa .12121nnn 證明證明第一式是顯然的第一式是顯然的,下面證第二式下面證第二式.若記若記,1, iniia 則依行列式定義則依行列式定義11,21nnnaaa 證畢證畢例例5 5設(shè)設(shè)nnnnnnaaaaa

18、aaaad2122221112111 nnnnnnnnnnabababaabababaad221122222111112112 證明證明.21dd 證證由行列式定義有由行列式定義有 nnnnppppppppptnnnnnnaaaaaaaaaaaad2121212121222211121111 nnnnnnnnnnabababaabababaad221122222111112112 nnnnpppnnppppppppptbaaa 2121212121211由于由于,2121npppn 所以所以 .12211212121daaadnnnnpppppppppt nnnnpppnnpppppppppt

19、baaad 21212121212121 nnnnppppppppptaaa212121211 故故1 、行列式是一種特定的算式,它是根據(jù)求解、行列式是一種特定的算式,它是根據(jù)求解方程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需方程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需要而定義的要而定義的.2、 階行列式共有階行列式共有 項(xiàng),每項(xiàng)都是位于不同項(xiàng),每項(xiàng)都是位于不同行、不同列行、不同列 的的 個(gè)元素的乘積個(gè)元素的乘積,正負(fù)號(hào)由下標(biāo)排正負(fù)號(hào)由下標(biāo)排列的逆序數(shù)決定列的逆序數(shù)決定.nn!n三、小結(jié)三、小結(jié)已知已知 1211123111211xxxxxf .3的的系系數(shù)數(shù)求求 x思考題解答思考題解答解解含含 的項(xiàng)有

20、兩項(xiàng)的項(xiàng)有兩項(xiàng),即即3x 1211123111211xxxxxf 對(duì)應(yīng)于對(duì)應(yīng)于 4334221112341aaaat 443322111aaaat ,1344332211xaaaat 343342211123421xaaaat . 13 的系數(shù)為的系數(shù)為故故 x nppptnaaad21211 定理定理2 2 階行列式也可定義為階行列式也可定義為n其中其中 為行標(biāo)排列為行標(biāo)排列 的逆序數(shù)的逆序數(shù). .tnppp21證明證明按行列式定義有按行列式定義有 nnppptaaad21211 nppptnaaad211211 記記對(duì)于對(duì)于d中任意一項(xiàng)中任意一項(xiàng) ,12121nnppptaaa 總有且僅有

21、總有且僅有 中的某一項(xiàng)中的某一項(xiàng)1d ,12121nqqqsnaaa 與之對(duì)應(yīng)并相等與之對(duì)應(yīng)并相等;反之反之, 對(duì)于對(duì)于 中任意一項(xiàng)中任意一項(xiàng)1d ,12121nppptnaaa 也總有且僅有也總有且僅有d中的某一項(xiàng)中的某一項(xiàng) ,12121nnqqqsaaa 與之對(duì)應(yīng)并相等與之對(duì)應(yīng)并相等, 于是于是d與與1d中的項(xiàng)可以一一對(duì)應(yīng)并相等中的項(xiàng)可以一一對(duì)應(yīng)并相等,從而從而.1dd 定理定理3 3 階行列式也可定義為階行列式也可定義為n nnqpqpqptaaad22111 其中其中 是兩個(gè)是兩個(gè) 級(jí)排列,級(jí)排列, 為行為行標(biāo)排列逆序數(shù)與列標(biāo)排列逆序數(shù)的和標(biāo)排列逆序數(shù)與列標(biāo)排列逆序數(shù)的和. .nnqq

22、q,ppp2121nt例例1 1 試判斷試判斷 和和655642312314aaaaaa662551144332aaaaaa 是否都是六階行列式中的項(xiàng)是否都是六階行列式中的項(xiàng).解解655642312314aaaaaa下標(biāo)的逆序數(shù)為下標(biāo)的逆序數(shù)為 6102210431265 t所以所以 是六階行列式中的項(xiàng)是六階行列式中的項(xiàng).655642312314aaaaaa662551144332aaaaaa 下標(biāo)的逆序數(shù)為下標(biāo)的逆序數(shù)為 8452316 t所以所以 不是六階行列式中的項(xiàng)不是六階行列式中的項(xiàng).662551144332aaaaaa 例例2 2 在六階行列式中,下列兩項(xiàng)各應(yīng)帶什么符號(hào)在六階行列式中,下列兩項(xiàng)各應(yīng)帶什么符號(hào).;)1(651456423123aaaaaa.)2(256651144332aaaaaa解解651456423123)1(aaaaaa431265的逆序數(shù)為的逆序數(shù)為012201 t, 6 所以所以 前邊應(yīng)帶正號(hào)前邊應(yīng)帶正號(hào).651456423123aaaaaa,655642312314aaaaaa行標(biāo)排列行標(biāo)排列341562的逆序數(shù)為的逆

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論