版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、incompressible quantum hall fluid after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al incompress
2、iblequantumhallfluid bo-yuhou anddan-taopeng instituteofmodernphysics,northwestuniversity xian,710069,p.r.china arx i v : h e p - t h /0210173v1 18 oct 2021 abstract afterreviewthequantumhalle ectonthefuzzytwo-spheres2andzhangandhus4-spheres4,theincompressiblequantumhall uidons2,s4andtorusarediscuss
3、edrespectively.next,thecorrespondinglaughlinwavefunctionsons2arealsogivenout.theadhmconstructionons4isdiscussed.wealsopointoutthatontorus,theincompressiblequantumhall uidisrelatedtotheintegrablegaudinmodelandthesolutioncanbegivenoutbytheyangbetheansatz. pacs:11.90.+t,11.25.-w keywords:quantumhalle e
4、ct,incomressiblequantumhall uid,noncommutativegeometry. 1introduction quantumhalle ects(qhe)havebeenanimportantresearchsubjectincondensedmatterphysicsandtheoreticalphysics.adecadebefore,laughlin1proposedthein-compressiblequantumhall uid(qhf)formulationforfractionalquantizationofthehalle ect(fqhf).so
5、onlaterhaldane2considereda2dimensionaleletrongasofnparticlesmovingonasphericalsurfaceofradiusrinaradial(diracmonopole)magnetic eldb= s email:byhouemail:dtpeng after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid
6、 on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al thepurposeofthispaperistogeneralizethedescriptionoftheqhfwhichhasbeenobtainedonthenoncommutative(n.c.)planer2andfuzzytwo-spheretozhangandhus4-sphereandtorus.inthenextsection,we rstrevie
7、wthehaldanesdiscriptionoftheqheon2-sphere,thenoncommutativealgebraandthemoyalstructureofthehilbertspaceisalsoshowninthissection.afterreviewzhangandhusgeneralizationoftheqheto4-sphere,wegiveoutthenoncommutativealgerawiththemoyalstructureonfuzzy4-sphereinsection3.insection4,byusingthemethodsuggestedby
8、susskind3andpolychronakos7,13,weconstructthen.c.chern-simonstheorytodescisbetheincompressibleqhfons2andgiveoutthealgebrastructureons2.thecorrespondingincompressibleqhftheoryforzhangandhus4-sphereisgiveninsection5.insection6,weconstructthedescriptionoftheincompressibleqhfontorusandrelateittotheintegr
9、ablegaudinmodelwhichcanbesolvedbythebethe-yangansatz.inthelastsection,weshortlygivesomesubjectswhichwillbeinvestigatedlater. 2 theoneparticlewavefunctionsinlllonthe rsthopf brations2 onthetwo-dimensionalspheres2=(s3su(2)/(s1u(1),thehamiltonianofasingleparticlewithchargeemovingaroundadiracmonopeleis
10、h= |2| 2 s , eb (1) heremisthee ectivemass,ristheraduisofs2andc= eb2 isthemagnetic eldstrenth andr = r |r| whichsatis esthecommutationrelations2 l,t=i t, + sr + s = (2) =l, tror (3) 2,l 2,l3and 2canbediagonalizedsimultaneouslyandtheircommontheoperatorss eigenfuntionsare j jm,s=dm,s(,), j|s|,m= j,j,(
11、4) j heredm,ssarethe niterotationmatrixelementsandtheindicesj,mandsarethe 2,l3ands respcetively.theeularangles=(,)eigenvaluesoftheoperatorsl after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and
12、 torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al equal=,=and=(,)whichhastheu(1)gaugefreedom.inlll(j=swithenergy1 2s! 2s! 2 )exp( i)= v v=sin 2 exp( i+i 21 21 (,), 2 =d 2 ,1 (1+|2)2 ,(7) andthecorrespondingsymplecticstructure(orthekahlerform)is =2i dd d
13、d, (8) wherek=ln(1+|2)isthekahlerpotential. thehilbertspacehnonthishopf brations2iscomposedbythen=2s+1oneparticlewavefunctionssm,(m= s,s)aroundthediracmonopoleg(s=ge).theoperatorsactingonthese2s+1statesarecovariant(2s+1)(2s+1)matrices,whichastheirreducibletensorialsetshouldbe(afternormalized) sjsj ,
14、0j2s,0mj,(9)(xm)m,m= mmmwhere(:)denotesthe3j-symbol.theseoperatorsconstitutetherightmodule14ofn.c.algebraanonfuzzyspheresimplywiththematrixproduct15: j1j2j j1j2j jj1j2 (xm)ln,(10)(xm)(xm)=1lm2mnsssm1m2m m j,m where:isthe6j-symbol.thismatrixproductisequivalenttothemoyalproducton fuzzysphere16.first,t
15、hecoherentstateswhichwerefoundbyperemolov17onthecosetspacej2=s2ingeodesicprojectioncoordinatesare s |)|,)=dm,(11) s(, )|s,m , m after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are di
16、scussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al whichsatisfy n 2j! 4 j1j2 thesymboloftheproductoftwooperatosxmandxequalsthe”starproduct”m12(moyarproduct)oftwosymbols,namely j1j2 dm1 dm2=( 1)j2 j1 m(2j+1) j,m j ddm(,)|(,)(,)|. (14) j1j2jm1m2m j1j2jsss jdm. (15) thi
17、sisaspecialcaseforthe productoftherightmoduleofanons214. 3 lllwavefunctionsasthesectionsofthe2ndhopft bundle onthe2ndhopfbundle( bration),zhangandhus4dimensionalfuzzyspheres4=(s7sp(4)/su(2)/(s3su(2),whichisequivalenttoso(5)/(so(3) so(3),thehamiltonianofoneparticleis h= 2 (1+r1 r2)(1+2r2)(2+r1+ r2)(3
18、+2r1)respectively.thesu(2)gaugepotentialvaluedbythesu(2)liealgebra is2 ii,ij=i ijkikandthecorrespondingcasimirisiii=i(i+1)whichspeci esthedimensionsofthesu(2)representationinthemonopolepotential.soforagiveni,fromthehamiltonian(16),wecanreadoutthatthedegeneracyoftheenergylevelisgivenbythedimensionali
19、tyofthecorrespondingirreduciblerepresentationd(r1,r2). 6 after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on
20、 $s2$ are al thegroundstate,whichisthelowestso(5)levellabeledby(r1=i=isn=1 p 2 ), p! ,p=m1+m2+m3+m4andk1=m3+m4,k2=2 m1+m2 ;ki,kiz(i=1,2)aretheeigenvaluesoftheangularmomentumofthe2 stable(keeps rinvariant)subgroupso(3) so(3)andi,izaretheeigenvaluesofthesu(2)isopin. thebasespaces4canbeparameterizedbyt
21、hefollowingcoordinatesystems 2 x1=sinsin cos( ), x3= sincos 2 2 cos(+), (19) x5=cos, where,0,)and,0,2).next,theorbitalcoordinatesxa(a=1,5),whichdescribethepointonthes4byxa=rxa,isrelatedthespinorcoordinates(=1,2,3,4)throughtherelation =1,xa=a=(a),(20) where(u1,u2)isanarbitrarytwocomponentscomplexvect
22、orsatisfyinguu=1andithasarotationsu(2)symmetrywhichmapstothesamepointxaons4.thecorrespondinggroupmanifoldiss3andthedirectionofthesu(2)isospinisspeci edbytheeularanglesi,i,i,whichdiscribethespinorsin: u1=cos i 2 ), u2=sin i 2 ). wherea,(a=1,5)arethe ve44diracmatriceswhichsatisfytheclifordalgebraa,b=2
23、ab.theexplicitsolutionof eq.(20)isgivenbyzhangandhu5: 3u1u11 =,(21)=(x4 ixii)4u2u2222(1+x5) (22) thegeometricconnectiongivesoutthesu(2)gaugepotentialaaoftheyangsmonopole de nedons4: i aa= 2 i andabisknownasthethoofttensor. after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang a
24、nd hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al byusingtheparameterizationofs4andthechoiceoftheisospincoordinates,theone-particlewavefunctioncanberewrittenas: k11,k12z;k
25、2,k2z;r2,=(sin) 1(1 cos)k1+ k1+1 (r,r) 1 2 , wherepnisthejacobipolynomialand k1i = k,m;i,iz|k2,k2z dm,k(,)duk1,k1z;k2,k2z;iz,iz(i,i,i)|i,iz .i,izz1z m,iz pr1+1+k2 k12(cos)uk1,k1z;k2,k2z;r2, (24) (25) theseone-particlewavefunctionsaretheyangssu(2)monopoleharmonics,i.e.the sphericalharmonicsonthecoset
26、spaceso(5)/su(2),whichislocallyisomorphictothespheres4s3. thehilbertspacehnonthissecondhopfbundle( bration)s4iscomposedbyalltheseone-particlewavefunctons.thecompletenessoftheseone-paticlewavefunctionsisensuredbythefollowingrelation: 1 dr1,r2=( pr1r20 2 ,q 2 ,p 2 ,0),(0,q r 2 t k1 j r 2 1 kj p p r 2
27、1 j k p n rr1r2jj1j2 rr1r2 p p2 after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al herer(r1,r2)
28、,j j1j2j1zj2z .thisalgebraisalsoaassociatealgbra. 4 twoincompressiblequantumhall uidons2 whenad0-braneentersad2-brane,itcandissolveintomagnetic ux,anditsdensityisequivalenttoamagnetic eldonthemembranewhilethedparticlecurrentsresultintheelectric eld.throughthet-duality,thed0-braneplaystheroleoftheele
29、ctonwhichistheendsofstringsond2-brane4,18,19,20,21.thisgiveacon gurationofthebranesandstrings-thequantumhallsolitonandthelowenergydynamicsdisplaythefractionalqhewhichcanbemodeledbyanoncommutativechern-simonstheory4.in3,susskindpropposedthenon-commutativechern-simonstheorytodescribetheareapreservingg
30、augetransformationoftheincompressibleelectrongasonaconstantmagneticb eld.heretheareapreservinggaugeis: xi=xi+ a jij 20 isthenoncommutativeparameter.andtheactionofthe noncommutativechern-simonstheoryis: s= k 3 a a a ,(30) wherekb=b andiscalledthe llingfraction.uptoatotaldivergent, thisnoncommutativec
31、hern-simonstheoryisequivalenttothematrixmodel: s= dt b 2 tr ab(xa+ia0,xa)xb+2a0 xa 2 + (i a0),(32) herexaisrepresentedbynnmatricesinmatrixtheory.isacomplexn-vector whichcomesfromthedropletboundarystates.thepotentialtermxa2 servesasaspatialregulatoranditbreaksthetranslationinvraianceoftheaction. inth
32、efuzzytwo-spheres2,theactionissimilarasthedropletinr2: s= dt b after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefuncti
33、ons on $s2$ are al hereisacomplexn-vectorwhichde nesthecp(n 1)modelmanifold22 andithasaleftglobalu(n)symmetryandarightlocalu(1)gaugesymmetrywhichcanbemapped (statisticalgauge eld)ford0 uidbytheseiberg-wittenmap.intothegauge elda thisaction,thetermeb 2s+1whichisthequantume ect. intheplanecase,theexpl
34、icitexpressionsofthelaughlinwavefunctionswasgivenin9.uponquantization,thegaussianconstraint(34)andthemomentmapequation(35)requirethephysicalstatestobesingletsofsu(n).thegroundstatebeingacompletelyantisymmetricsu(n)siguletwithandx hasthefollowingform: r2 wherex=12(x1ix2)whichsatisfytheconstrainequati
35、on(34)and|0 isannihilatedbyx+sands,wihletheexcitedstatescanbewrittenas |exc = n i=1 (trx )ci i1in i1(x )i2(x (n 1) |gr = i1in i1(x )i2(x (n 1) )ink|0 , (38) )ink|0 , (39) 1 onthefuzzytwo-spheres2,thekillingvectorsons2xd 1actonthe s state| hnwhichisequivalenttothesymboldm, s.thehamiltonianofthesystem
36、is 2 s 2)c(i h= (1+|j|2)2,(41) after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al andthesimplec
37、ticform = n j=1 2i jdjd (1 ij),x+=diag(z1,zn),and 2 theexcitedstate|exc astheeigenfunctionofthehamiltonian=tr(x )isexpressedbyjackpolynomial. i j 5 incompressiblequantumhall uidons4 onthefour-spheres4,wemaysetthebraneconstructionas(2,0)noncommutatityforelectronic uidorasiiasupergravityford0 uid. ont
38、hes4,thefourkillingvectorsalongthesurfacebecomethebasisi(i=1,4),thefundamentalsu(2)monopolewavefunctionsofc.n.yang23,24,whichiscon-formallyequivalenttotheinstantonon4-sphere.sos4hasahyperkahlersymplectic 1 metric.theleftglobalnnquarternionmatrix(n= 2 ,1 2222 , 111122,1221 , 121 , 2 11 , , 1 2 , 2 ,
39、, 1 after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al su(2)monopole(instanton).istheyangssu(2)
40、monopoleharmonicfunctionwith(p,q)=(1,0),here(p,q)isthesp(2)c2casimirwithp=r1+r2,q=r1 r2.inthehedgehoggauge,italsorepresentthe(anti)selfdualstationarysubgrouparoundtheradialdirection,e.g.sristhatalong r.inangularmomentumtheory,theconventional r rotationisdk,s.forthedetailofdfunctionpleaseconferto12.
41、nowthemodulispaceoftheqhfons4iss4 n/sn.next,wehavethehyperkahlersymplecticformforthisnoncommutatives4intermsofthesekillingvectors: = n i=1 dqidqi, (45) heretheqi(theji)dependsontheshiftofthe”center”ofn.c.solitonfromthenorth poleto(i,i,i,i). the”areapreserving”constrainequationwithquasiparticlesource
42、i,jturnstobex,x =(i+j+k)(1 n|v v|),(46) b1b2 wherex=q+b=x,b=,(i+j+k)areself-dualorbitalmomentum b2 b1 andwehavechooseni,jtogetanweylinvariant v|=1n(1,1). 6 . incompressiblequantumhallfluidontorus onthetorust,wechoosethefollowingcomovingframecoordinatesofelectrons: zi= 1 (xi+iyi),2 zi= 1 (xi iyi),2 (
43、i=1,2,n). (47) thenthemomentmapequationbecomes zj,zk = 1 after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$, the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on
44、 $s2$ are al sln(t)ontheellipticcurvetis e=( 1)(0) 1 (zjk) j k=j n (zji) i=j theweylre ectionisrealizedbyj kforejk(j=k).thed- atequationwithsourcethenis dz,=(1 n|v v|)2(u), inamorecommonbasis,leteijhave ejk,elm=ejmkl elkjm, .e0commuteswithe. b2 ,we=(0,0)(i)ije,where(i1,2)ab=a+1,2 zj (53) v|=(1,1).(5
45、4) thesl(n)bundle,thehamiltonianreducedbythemomentmapwithquasiparticleas asource,turnstobeadi erentialloperator(quantumlaxoperator)ofgaudinmodel lij=w(u)e(i)ij,lijij(55) =(0,0) where w(u)= (0)(u) after review the quantum hall effect on the fuzzy two-sphere $s2$ and zhang and hu's 4-sphere $s4$,
46、the incompressible quantum hall fluid on $s2$, $s4$ and torus are discussed respectively. next, the corresponding laughlin wavefunctions on $s2$ are al 7discussion inthispaper,wehavesucceededinconstructingthen.c.algebraofthes2ands4andgeneralizingthedescriptionsoftheincompressibleqhftothefuzzy4-spher
47、es4andtorust.onthetorus,wenoticethattheincompressibleqhfcanberelatedtotheintegrablegaudinmodelwhichcanbesolvedbythebethe-yangansatz. asseeninsection4,aftert-duality,thed0braneswhichenterind2branebecometheelectronswhichistheendsofthestringsond2brane.soforothernoncommutativemanifolds,itisinterestingto
48、relatethematrixalgebragiveninthispaperwithsomeapplicationsind-branedynamics. references 1ughlin,phys.rev.lett.50(1983)1395.2f.d.m.haldane,phys.rev.lett.51(1983)605. 3l.susskind,thequantumhallfluidandnon-commutativechern-simonstheory, hep-th/0101029.4b.a.berneving,j.brodie,l.susskindandn.toumbas,jhep
49、0102(2021)003, hep-th/0010105.5s.c.zhang,j.p.hu,science,294(2021)823.cond-mat/0110572. 6j.p.hu,s.c.zhang,collectiveexcitationsattheboundaryofa4dquantumhall droplet,cond-mat/0112432.7a.p.polychronakos,jhep0104(2021)011,hep-th/0103013. 8b.morariu,a.p.polychronakos,jhep0107(2021)006,hep-th/0106072.9s.hellerma
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年新式服務(wù)行業(yè)員工合同協(xié)議
- 在線商城創(chuàng)始人合伙協(xié)議書
- 通信網(wǎng)絡(luò)建設(shè)及技術(shù)支持協(xié)議書
- 衛(wèi)生室制度(簡(jiǎn)單版9篇)
- 電力行業(yè)招標(biāo)代理服務(wù)管理方案
- 社區(qū)防雷電安全教育方案
- 文化遺產(chǎn)保護(hù)文化墻方案
- 高一下學(xué)期學(xué)習(xí)計(jì)劃(5篇)
- 2024至2030年中國(guó)音響面網(wǎng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)藥用箔行業(yè)投資前景及策略咨詢研究報(bào)告
- 動(dòng)物園主題認(rèn)識(shí)數(shù)字1-5幼兒教育教學(xué)
- 新疆歷史印記課件
- 2024年西南民族大學(xué)招聘教師歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 2023-2024學(xué)年華東師大版八年級(jí)數(shù)學(xué)上冊(cè)期中階段 第11-13章 綜合練習(xí)題
- 2024“我讀路遙”主題征文作文(18篇)
- 內(nèi)部項(xiàng)目跟投協(xié)議書模板
- 2024城市公共設(shè)施適老化設(shè)施服務(wù)要求與評(píng)價(jià)
- 音樂人教版八年級(jí)(上冊(cè))洪湖水浪打浪 課件
- 少先隊(duì)輔導(dǎo)員技能大賽考試題庫(kù)300題(含答案)
- 2024年全國(guó)企業(yè)員工全面質(zhì)量管理知識(shí)競(jìng)賽考試原題庫(kù)(含答案)
- 2024年版的企業(yè)績(jī)效評(píng)價(jià)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論