有效數(shù)學理論下數(shù)學雙基教育和數(shù)學變式教學研究_第1頁
有效數(shù)學理論下數(shù)學雙基教育和數(shù)學變式教學研究_第2頁
有效數(shù)學理論下數(shù)學雙基教育和數(shù)學變式教學研究_第3頁
有效數(shù)學理論下數(shù)學雙基教育和數(shù)學變式教學研究_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、    有效數(shù)學理論下數(shù)學雙基教育和數(shù)學變式教學研究    【摘要】本文針對雙基教學的內(nèi)涵以及雙基教學主要的表現(xiàn)特征進行了簡要的分析,并且以兩種形式結(jié)合在一起的案例為突破口,進一步討論了變式教學以及變式教學特征?!娟P(guān)鍵詞】有效教學 雙基教育 變式教學g420 a 2095-3089(2016)08-0134-02一、數(shù)學雙基教學理論內(nèi)涵及特征(一)數(shù)學雙基教學理論內(nèi)涵數(shù)學雙基教學理論就是數(shù)學基礎(chǔ)知識和數(shù)學基本技能的有效融合,在實際教學過程中學生需要對兩項基本的內(nèi)容進行更加有效的內(nèi)化,才能提升整體數(shù)學學習能力。并且在細化的分類數(shù)學基礎(chǔ)知識的過程中,數(shù)學知識

2、要包括整體的數(shù)學知識、數(shù)學解題策略以及數(shù)學思想,只有保障實踐基礎(chǔ)和操作程序的規(guī)范化,才能有效的提升整體數(shù)學學習的效率。而對于數(shù)學基本的技能,相關(guān)學者認為,在數(shù)學學習過程中,學生要掌握的學習技能不僅包括基礎(chǔ)運算能力,也要建立邏輯推理能力和繪圖分析能力。(二)數(shù)學雙基教學理論特征在實際的數(shù)學課堂內(nèi),教師要進行雙基教學,首先要保證基礎(chǔ)知識和基本技能的有效融合。通常,基本的數(shù)學雙基教學課程結(jié)構(gòu)包括:知識的復習、數(shù)學新課程的建構(gòu)、有效的案例分析、實踐教學、課堂小結(jié)和反思,最后教師布置相應的數(shù)學作業(yè),教師要遵循這樣的教學結(jié)構(gòu)對學生建立數(shù)學雙基教學。在知識的復習過程中,教師要引導學生進行有效知識的回顧,建立

3、相應的數(shù)學網(wǎng)絡(luò)化模型;在新知識傳授的過程中,學生需要建立自主學習意識,帶著問題進行學習。教師在實際案例分析的過程中,也要針對新知識點進行高效的分析,集中介紹相應的公式和原理,保證學生在理解相應定理的基礎(chǔ)上,進一步內(nèi)化相應的定義和定理。二、變式教學內(nèi)涵及特征(一)數(shù)學變式教學的內(nèi)涵變式教學在實際教學過程中具有重要的意義,使學生進行有效推演和自我總結(jié)的好機會,學生在課堂內(nèi),利用原有的知識結(jié)構(gòu)進行新知的推斷和判別,能有助于學生從感性認知上升為理性內(nèi)化,這對于學生建立更加完整的數(shù)學思維和認知結(jié)構(gòu)有很大的幫助,學生能利用不變的數(shù)學本質(zhì),進行數(shù)學條件的有效變更。教師要利用相應的教學環(huán)境進行教學結(jié)構(gòu)的轉(zhuǎn)變,

4、真正實現(xiàn)教學內(nèi)涵和教學措施的深刻和靈活。(二)數(shù)學變式教學的特征在變式教學結(jié)構(gòu)中,教師要著重關(guān)注學生兩方面能力的培養(yǎng)。其一,教師要集中關(guān)注學生對于概念的多角度理解和內(nèi)化。在實際教學過程中,教師要學會有效的引導學生進行思維的轉(zhuǎn)變。教師利用概念性變式教學進行概念本質(zhì)和非本質(zhì)特征的深入分析,保證學生能從多維度進行數(shù)學問題的思考,從而建立有效的新概念。其二,教師要從數(shù)學教學活動中進一步確保數(shù)學經(jīng)驗的多層次性,教師要利用學生現(xiàn)有的知識結(jié)構(gòu)進行延伸邏輯教學,保證學生建立推演的邏輯轉(zhuǎn)化理念,學生要利用多層次學習模型進行認知結(jié)構(gòu)的轉(zhuǎn)變,教師利用層次推演的變式教學幫助學生將碎片化的知識點串聯(lián)成線,然后在利用相應

5、的教學指導,保證學生能將知識線索編制成知識網(wǎng)絡(luò),從而真正內(nèi)化相應的數(shù)學知識點。三、融合了兩種模式下的教學案例(一)有效數(shù)學理論下雙基教學和變式教學融合后的教學優(yōu)勢和劣勢在實際教學過程中,教師利用兩種方式進行教學融合,既有教學結(jié)構(gòu)上不可替代的教學優(yōu)勢,也具有相應的教學局限性。一方面,教學的有效性。教師利用兩種結(jié)構(gòu)的融合模式教學,能進一步優(yōu)化知識掌握和技能訓練教學的時效性,也能保證學生主體學習地位的展現(xiàn),教師利用相應的課程設(shè)計,促進學生建立自主推導的建立。另外,教師利用融合機制能有效的調(diào)動學生的學習積極性,進一步優(yōu)化整體數(shù)學課堂的學習效率。另一方面,兩種教學結(jié)構(gòu)的融合也存在一定的局限性。教師在課程

6、講解過程中更加注重實際解題的訓練,而對數(shù)學基礎(chǔ)的思想方法的培養(yǎng)上有所怠慢。(二)以教學案例為基礎(chǔ)的教學過程分析在實際教學過程中,教師要利用相應的教學模式進行有效的講解,本文以三角函數(shù)一課為例。首先,進行問題的引入。教師要設(shè)置相應的數(shù)學問題,例如,任意角 的三角函數(shù)定義結(jié)構(gòu);三角函數(shù)值符號;利用三角函數(shù)定義猜想任意角 適用的三角函數(shù)等量關(guān)系。另外,教師也可以利用tan 2 的數(shù)值推斷sina和cos 的數(shù)值。其次,教師要進行新知的介紹。教師可以鼓勵學生建立課前預學習慣。并且保證學習小組間的有效交流,教師適當引導知識建構(gòu)。從而證明同角三角函數(shù)基本關(guān)系式。例如,設(shè)p(x,y)是終邊上任一點,然后利用sin 、cos 、tan 與x、y、r的關(guān)系式進行有效的等量推導。然后舉例講解,對sin2 +cos2 =1、sin2 +cos2 =1、si

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論