版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021年河北省唐山市育林中學(xué)高三數(shù)學(xué)理下學(xué)期期末試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 若函數(shù)f(x)=3ax+12a在區(qū)間(1,1)上存在一個零點,則a的取值范圍是()ab或a1cda1參考答案:b【考點】函數(shù)的零點【分析】由于函數(shù)f(x)=3ax+12a在區(qū)間(1,1)上存在一個零點,利用一次函數(shù)的單調(diào)性可得:f(1)f(1)0,解得即可【解答】解:函數(shù)f(x)=3ax+12a在區(qū)間(1,1)上存在一個零點,f(1)f(1)0,即(3a+12a)(3a+12a)0,化為(5a1)(a+1)0解得a或a1a的取
2、值范圍是:a或a1故選:b【點評】本題考查了一次函數(shù)的單調(diào)性和函數(shù)零點的判定定理,屬于中檔題2. 復(fù)數(shù) a b c d參考答案:c略3. 設(shè)tan(+)=2,則=()ab1c3d1參考答案:c【考點】運用誘導(dǎo)公式化簡求值【分析】
3、由條件利用誘導(dǎo)公式求得tan的值,再利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,化簡要求的式子,可得結(jié)果【解答】解:tan(+)=tan=2,則=3,故選:c4. 球面上有a,b,c三點,球心o到平面abc的距離是球半徑的,且ab=2,acbc,則球o的表面積是()a81b9cd參考答案:b【考點】lg:球的體積和表面積【分析】求出截面圓的半徑,根據(jù)已知中球心到平面abc的距離,利用直角三角形求出球的半徑,代入球的表面積公式,即可得到答案【解答】解:由題可知ab為abc的直徑,令球的半徑為r,則,可得,則球的表面積為s=4r2=9故選b5. 已知定義在r上的偶函數(shù)f(x)滿足f(x4)f(x),且在
4、區(qū)間上f(x)x,若關(guān)于x的方程有三個不同的根,則m的范圍為 ( ) a(2,4) b2, c() d參考答
5、案:d6. 若i為虛數(shù)單位,則復(fù)數(shù)=()ai bi c d參考答案:a考點:復(fù)數(shù)代數(shù)形式的乘除運算3930094專題:計算題分析:兩個復(fù)數(shù)相除,分子和分母同時乘以分母的共軛復(fù)數(shù),運算求得結(jié)果解答:解:復(fù)數(shù)=i,故選a點評:本題主要考查兩個復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運算性質(zhì),屬于基礎(chǔ)題7. 某機構(gòu)對青年觀眾是否喜歡跨年晚會進行了調(diào)查,人數(shù)如表所示: 不喜歡喜歡男性青年觀眾3010女性青年觀眾3050現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取n人做進一步的
6、調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了6人,則na12 b16 c24 d32參考答案:c8. 設(shè)奇函數(shù)f(x)在1,1上是增函數(shù),且f(1)1,當a1,1時,f(x)t22at1對所有的x1,1恒成立,則t的取值范圍是()at2或t2或t0 bt2或t2ct2或t2或t0
7、60; d2t2參考答案:a9. 雙曲線的焦點到漸近線的距離為a b c 1 d參考答案:c略10. 某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的1.5倍,為了更好地對比該??忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是( )a. 與2015年相比,2018年一本達線人數(shù)減少b. 與2015年相比,2018二本達線人數(shù)增加了0.5倍c. 201
8、5年與2018年藝體達線人數(shù)相同d. 與2015年相比,2018年不上線的人數(shù)有所增加參考答案:d【分析】設(shè)2015年該校參加高考的人數(shù)為,則2018年該校參加高考的人數(shù)為.觀察柱狀統(tǒng)計圖,找出各數(shù)據(jù),再利用各數(shù)量間的關(guān)系列式計算得到答案.【詳解】設(shè)2015年該校參加高考的人數(shù)為,則2018年該校參加高考的人數(shù)為.對于選項a.2015年一本達線人數(shù).2018年一本達線人數(shù)為,可見一本達線人數(shù)增加了,故選項a錯誤;對于選項b,2015年二本達線人數(shù)為,2018年二本達線人數(shù)為,顯然2018年二本達線人數(shù)不是增加了0.5倍,故選項b錯誤;對于選項c,2015年和2018年.藝體達線率沒變,但是人數(shù)
9、是不相同的,故選項c錯誤;對于選項d,2015年不上線人數(shù)為.2018年不上線人數(shù)為.不達線人數(shù)有所增加.故選d.【點睛】本題考查了柱狀統(tǒng)計圖以及用樣本估計總體,觀察柱狀統(tǒng)計圖,找出各數(shù)據(jù),再利用各數(shù)量間的關(guān)系列式計算是解題的關(guān)鍵二、 填空題:本大題共7小題,每小題4分,共28分11. 把正整數(shù)排列成如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行中的奇數(shù)和第奇數(shù)行的偶數(shù),得到如圖乙的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列,若則n= 。參考答案:102812.
10、設(shè)an是等比數(shù)列,則“a1a2a3”是“數(shù)列an是遞增數(shù)列”的_條件 參考答案:充要略13. 已知函數(shù)為偶函數(shù),當時,則曲線在點處的切線方程為_參考答案:14. 已知為第二象限角,,則 .參考答案:略15. 若復(fù)數(shù)x(1ai)(2i)的實部與虛部相等,則實數(shù)a參考答案: 【知識點】復(fù)數(shù)的基本概念;復(fù)數(shù)代數(shù)形式的乘除運算l4解析: ,因為實部與虛部相等,所以,解得,故答案為【思路點撥】利用兩個復(fù)數(shù)代數(shù)形式的乘法,虛數(shù)單位i 的冪運算性質(zhì),把復(fù)
11、數(shù)化為最簡形式,由實部和虛部相等,求出實數(shù)a16. 將一顆質(zhì)地均勻的骰子(一種各個面上分別標有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和小于10的概率是 參考答案:;將先后兩次點數(shù)記為,則共有個等可能基本事件,其中點數(shù)之和大于等于10有六種,則點數(shù)之和小于10共有30種,概率為17. 設(shè)sn為等比數(shù)列an的前n項和,則_參考答案:.【分析】設(shè)等比數(shù)列的公比為,由,解得,進而可求解的值,得到答案.【詳解】由題意,設(shè)等比數(shù)列的公比為,由,即,解得,又由,即
12、.【點睛】本題主要考查了等比數(shù)列的通項公式的應(yīng)用,以及前n項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 某大學(xué)高等數(shù)學(xué)老師上學(xué)期分別采用了兩種不同的教學(xué)方式對甲、乙兩個大一新生班進行教改試驗(兩個班人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣)?,F(xiàn)隨機抽取甲、乙兩班各20名同學(xué)的上學(xué)期數(shù)學(xué)期末考試成績,得到莖葉圖如下:()從乙班這20名同學(xué)中隨機抽取兩名高等數(shù)學(xué)成績不得低于85分的同學(xué),求成績?yōu)?0分的同學(xué)被抽
13、中的概率;()學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴牧新?lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學(xué)方式有關(guān)?” 甲班乙班合計優(yōu)秀 不優(yōu)秀 合計 下面臨界值表僅供參考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828 (參考公式:其中) ()從乙班高等數(shù)學(xué)成績不低于85分的同學(xué)中抽取2人,成績不低于90分的同學(xué)得獎金100元,否則得獎金
14、50元,記為這2人所得的總獎金,求的分布列和數(shù)學(xué)期望。望。參考答案:略19. (本小題滿分14分) 已知函數(shù)(e是自然對數(shù)的底數(shù),e=2.71828) (1)若k=e,求函數(shù)的極值; (2)若,求函數(shù)的單調(diào)區(qū)間; (3)若,討論函數(shù)在上的零點個數(shù)參考答案:解:(1)由得,所以
15、 1分 令,得,解得 由得,由得, 當變化時,、的變化情況如下表:10+單調(diào)遞減極小值單調(diào)遞增
16、
17、 2分所以當=1時,有極小值為0,無極大值 3分(2)由,得 當時,則對恒成立,&
18、#160; 此時的單調(diào)遞增,遞增區(qū)間為 4分 當時,由得到,由得到,
19、 所以,時,的單調(diào)遞增區(qū)間是;遞減區(qū)間是 6分 綜上,當時,的單調(diào)遞增區(qū)間為; 當時,的單調(diào)遞增區(qū)間是;遞減區(qū)間是 7分(3)解法一: 當時,對恒成立,所以函數(shù)在上無零點8分 當時,由(2)知,對恒成立,函數(shù)在上單調(diào)遞增,又,
20、 9分 所以函數(shù)在上只有一個零點
21、60; 10分(若說明取絕對值很大的負數(shù)時,小于零給1分)當時,令,得,且在上單調(diào)遞減,在 上單調(diào)遞增,在時取得極小值,即在上最多存在兩個零點()若函數(shù)在上有2個零點,則,解得;11分()若函數(shù)在上有1個零點,則或,解得或;
22、60; 12分()若函數(shù)在上沒有零點
23、,則或,解得
24、 13分 綜上所述, 當時,在上有2個零點;當或時,在上有1個零點;當時,在上無零點 14分 解法二:
25、60; 當時,對恒成立,所以函數(shù)在上無零點8分 當時,在上的零點就是方程在上的解,即函數(shù)與在上的交點的橫坐標 9分 當時,如圖1,函數(shù)與只在上有一個交點,即函數(shù)在上有一個零點 10分 當時,若相切
26、時,如圖2,設(shè)切點坐標為,則 即切線的斜率是所以,解得,即當時,只有一個交點,函數(shù) 在上只有一個零點;11分由此,還可以知道,當時,函數(shù)在上無零點 12分當過點時,如圖3,所以時,在上有兩個交點,即函數(shù)在上有兩個零點;時,在上只有一個交點,即函數(shù)在上只有一個零點
27、60; 13分綜上所述,當時,函數(shù)在上有2個零點;當或時,函數(shù)在上有1個零點;當時,函數(shù)在上無零點 14分20. (14分)已知等腰梯形pdcb中(如圖1),pb=3,dc=1,pd=bc=,a為pb邊上一點,且pa=1,將pad沿ad折起,使面pad面abcd. (1)證明:平面pad平面pcd;
28、 (2)試在棱pb上確定一點m,使截面amc把幾何體分成的兩部分幾何體的體積之比。參考答案:解析:(1)證明:依題意知:
29、0; (2)由(i)知平面abcd 平面pab平面abcd. 在pb上取一點m,作mnab,則mn平面abcd, 設(shè)mn=h 則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制冷機房管理規(guī)范
- 租賃電梯房合同(2篇)
- 自建房包工安全合同(2篇)
- 蘇教版高中課件
- 蘇教版下冊課件
- 2024-2025學(xué)年初中同步測控優(yōu)化設(shè)計物理八年級上冊配人教版第1章 機械運動含答案
- 2024-2025學(xué)年初中同步測控優(yōu)化設(shè)計物理九年級全一冊配人教版第19章 生活用電含答案
- 西京學(xué)院《影視產(chǎn)業(yè)經(jīng)營與管理》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《書法》2022-2023學(xué)年第一學(xué)期期末試卷
- 自由落體運動課件
- 2024年中國遠洋海運集團限公司招聘(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 2024中國郵政集團限公司甘肅省分公司校園招聘(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- DL-T+961-2020電網(wǎng)調(diào)度規(guī)范用語
- 鋼琴調(diào)律合同模板
- 倉儲管理員勞動合同范本
- 2005版勞動合同范本
- 中國醫(yī)美行業(yè)2024年度洞悉報告-德勤x艾爾建-202406
- 2024年風(fēng)景園林專業(yè)中級職稱《法律法規(guī)及技術(shù)標準》考試題庫(含答案)
- DL-T2337-2021電力監(jiān)控系統(tǒng)設(shè)備及軟件網(wǎng)絡(luò)安全技術(shù)要求
- 2024勞動合同模板下載
- 聲屏障結(jié)構(gòu)技術(shù)標準(全面修訂征求意見稿)
評論
0/150
提交評論