一元二次方程應(yīng)用之銷售問題-課件PPT_第1頁
一元二次方程應(yīng)用之銷售問題-課件PPT_第2頁
一元二次方程應(yīng)用之銷售問題-課件PPT_第3頁
一元二次方程應(yīng)用之銷售問題-課件PPT_第4頁
一元二次方程應(yīng)用之銷售問題-課件PPT_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021/8/261列方程解應(yīng)用題的一般步驟?列方程解應(yīng)用題的一般步驟?第第二二步:步:設(shè)設(shè)未知未知數(shù)數(shù)( (單位名稱單位名稱); );第三步:第三步:根據(jù)相等關(guān)系根據(jù)相等關(guān)系列列出列出方程;出列出方程;第四步:第四步:解解這個方程,求出未知數(shù)的值;這個方程,求出未知數(shù)的值;第五步:第五步:檢檢驗驗求得的值是否符合實際意義;求得的值是否符合實際意義;第六步:第六步:寫出寫出答答案(及單位名稱)。案(及單位名稱)。提示:提示:隱含條件的挖掘,從中找等量關(guān)系隱含條件的挖掘,從中找等量關(guān)系。第一步:第一步:審審清題意,找出等量關(guān)系。清題意,找出等量關(guān)系。2021/8/2622021/8/26322.

2、322.3用一元二次方程解決實際問題用一元二次方程解決實際問題2021/8/264問題一、如果每束玫瑰盈利問題一、如果每束玫瑰盈利10元,平元,平均每天可售出均每天可售出40束束.為擴大銷售,經(jīng)調(diào)為擴大銷售,經(jīng)調(diào)查發(fā)現(xiàn),若每束降價查發(fā)現(xiàn),若每束降價1元,則平均每天元,則平均每天可多售出可多售出8束束. 如果小新家每天要盈利如果小新家每天要盈利432元,那么每束玫瑰應(yīng)降價多少元?元,那么每束玫瑰應(yīng)降價多少元?盈利盈利 每束利潤每束利潤 束數(shù)束數(shù) = 總總利潤利潤每束利潤每束利潤 束數(shù)束數(shù)10401040降價降價1元元1014081降價降價2元元1024082降價降價X元元10X408X43220

3、21/8/265解:設(shè)每束玫瑰應(yīng)降價解:設(shè)每束玫瑰應(yīng)降價X元,則每束獲利元,則每束獲利(10-X)元,平均每天可售出()元,平均每天可售出(40+8X)束,)束, (10-X)()(40+8X)= 432整理得整理得:X2-5X+4=0解得解得: X1=1 X2=4檢驗檢驗:X1=1 ,X2=4 都是方程的解都是方程的解數(shù)量關(guān)系數(shù)量關(guān)系( )( )每束利潤每束利潤束數(shù)束數(shù)利潤利潤=由題意得由題意得:10-X40+8X432因式分因式分解法解法小新家每天要盈利小新家每天要盈利432元,元,那么每束玫瑰應(yīng)降價那么每束玫瑰應(yīng)降價1元或元或4元。元。答答:2021/8/266如果每束玫瑰盈利如果每束玫

4、瑰盈利10元,平均每天元,平均每天可售出可售出40束束.為擴大銷售,經(jīng)調(diào)查為擴大銷售,經(jīng)調(diào)查發(fā)現(xiàn),若每束降價發(fā)現(xiàn),若每束降價1元,則平均每元,則平均每天可多售出天可多售出8束束. 如果小新家每天如果小新家每天要盈利要盈利432元,元, 同時也讓顧客獲得同時也讓顧客獲得最大的實惠最大的實惠.那么每束玫瑰應(yīng)降價那么每束玫瑰應(yīng)降價多少元?多少元? 同時也讓顧客獲得同時也讓顧客獲得最大的實惠最大的實惠 2021/8/267解:設(shè)每束玫瑰應(yīng)降價解:設(shè)每束玫瑰應(yīng)降價X元,則每束獲利元,則每束獲利(10-X)元,平均每天可售出()元,平均每天可售出(40+8X) 束,束, (10-X)()(40+8X)=

5、432整理得整理得:X2-5X+4=0解得解得: X1=1 X2=4 X2=4 是方程的解是方程的解且符合題意且符合題意答答:每束玫瑰應(yīng)降價每束玫瑰應(yīng)降價4元。元。數(shù)量關(guān)系數(shù)量關(guān)系( )( )每束利潤每束利潤束數(shù)束數(shù)總利潤總利潤=由題意得由題意得:10-X40+8X432要注意要注意哦!哦!經(jīng)檢驗:經(jīng)檢驗: X1=1 不符合題意應(yīng)舍去不符合題意應(yīng)舍去2021/8/268列一元二次方程解應(yīng)用題列一元二次方程解應(yīng)用題的基本步驟:的基本步驟:審審答答設(shè)設(shè)列列解解驗驗解:設(shè)每束玫瑰應(yīng)降價解:設(shè)每束玫瑰應(yīng)降價X元,元,則每束獲利(則每束獲利(10-X)元,)元,平均每天可售出(平均每天可售出(40+8X

6、) 束,束, ( )( )數(shù)量關(guān)系數(shù)量關(guān)系每束利潤每束利潤束數(shù)束數(shù)10-X40+8X432=利潤利潤(10-X)()(40+8X)= 432X2-5X+4=0X1=1 X2=4檢驗:檢驗:X2=4 是方程的解是方程的解且符合題意且符合題意答答:小新家每天要盈利小新家每天要盈利432元,元,那么每束玫瑰應(yīng)降價那么每束玫瑰應(yīng)降價4元。元。由題意,得由題意,得解得:解得:驗驗審審2021/8/269 1、某種服裝平均每天可銷售20件,每件盈利44元;若每件降價1元,則每天可多售5件。如果每天要盈利1600元,每件應(yīng)降價多少元?課堂測試課堂測試2021/8/261033每株利潤每株利潤 株數(shù)株數(shù)利潤利

7、潤33增加增加1株株30.5x增加增加2株株增加增加x株株3+x每株利潤每株利潤 株數(shù)株數(shù) = 總利潤總利潤3+130.5130.523+2小新家的花圃用花盆培育玫瑰花苗小新家的花圃用花盆培育玫瑰花苗.經(jīng)經(jīng)過試驗發(fā)現(xiàn),每盆植入過試驗發(fā)現(xiàn),每盆植入3株時,平均每株時,平均每株盈利株盈利3元;以同樣的栽培條件,每盆元;以同樣的栽培條件,每盆每增加每增加1株,平均每株盈利就減少株,平均每株盈利就減少0.5元元.要使每盆的盈利達(dá)到要使每盆的盈利達(dá)到10元,并盡量元,并盡量降低成本,則每盆應(yīng)該植多少株?降低成本,則每盆應(yīng)該植多少株?盈利盈利間接設(shè)未知數(shù)間接設(shè)未知數(shù)10問題二問題二2021/8/2611如

8、果每束玫瑰盈利如果每束玫瑰盈利10元,元,平均每天可售出平均每天可售出40束束.為擴為擴大銷售,經(jīng)調(diào)查發(fā)現(xiàn),若大銷售,經(jīng)調(diào)查發(fā)現(xiàn),若每束降價每束降價1元,則平均每天元,則平均每天可多售出可多售出8束束.如果小新家每如果小新家每天要天要盈利盈利432元,那么每束元,那么每束玫 瑰 應(yīng) 降 價 多 少 元 ?玫 瑰 應(yīng) 降 價 多 少 元 ?利潤問題:利潤問題:回顧與思索回顧與思索單件利潤單件利潤數(shù)量數(shù)量借助列表借助列表總利潤總利潤小新家的花圃用花盆培育小新家的花圃用花盆培育玫瑰花苗,經(jīng)過試驗發(fā)現(xiàn)玫瑰花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植入每盆植入3株時,平均每株株時,平均每株盈利盈利3元;以同樣的栽培條元;

9、以同樣的栽培條件,每盆每增加件,每盆每增加1株,平均株,平均每株盈利就減少每株盈利就減少0.5元。要元。要使每盆的使每盆的盈利盈利達(dá)到達(dá)到10元,元,則 每 盆 應(yīng) 該 植 多 少 株 ?則 每 盆 應(yīng) 該 植 多 少 株 ?2021/8/2612問題問題1 1:揚州萬家福商城在銷售中發(fā)現(xiàn):揚州萬家福商城在銷售中發(fā)現(xiàn):“寶寶樂寶寶樂”牌童裝平均每天可售出牌童裝平均每天可售出2020件,每件盈利件,每件盈利4040元元. .為了為了迎接迎接”十一十一”國慶節(jié)國慶節(jié), ,商場決定采取適當(dāng)?shù)慕祪r措商場決定采取適當(dāng)?shù)慕祪r措施施. .經(jīng)調(diào)查發(fā)現(xiàn)經(jīng)調(diào)查發(fā)現(xiàn), ,如果每件童裝降價如果每件童裝降價4 4元,那

10、么平均元,那么平均每天就可多售出每天就可多售出8 8件件. .要想平均每天盈利要想平均每天盈利12001200元元, ,那那么每件童裝應(yīng)該降價多少元么每件童裝應(yīng)該降價多少元? ? 單件利潤銷量總利潤降價前40元20件800元降價后盡快減少盡快減少庫存庫存2021/8/2613每天銷售的童裝件數(shù)X每件童裝的利潤=每件這種童裝的總利潤 解:設(shè)每件童裝應(yīng)降價x元,每件童裝的利潤 (40- x)元,每天銷售的童裝件數(shù)(20+ X8)件,根據(jù)題意,得 (20+ X8)(40- x)=1200 化簡得 x2 -30 x+200=0 解得X X1 1=20=20,X X2 2=10=10 因為盡快減少庫存,

11、所以X X2 2=10=10 答:每件童裝應(yīng)降價20元。4x分析4x2021/8/2614變式變式2 2:揚州萬家福商城在銷售中發(fā)現(xiàn):揚州萬家福商城在銷售中發(fā)現(xiàn):“寶寶樂寶寶樂”牌童裝牌童裝進(jìn)價為進(jìn)價為6060元元, ,當(dāng)定價為當(dāng)定價為100100元時元時, ,平均每天可平均每天可售出售出2020件件. .為了迎接為了迎接”十一十一”國慶節(jié)國慶節(jié),商場決定采取商場決定采取適當(dāng)?shù)慕祪r措施適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn)經(jīng)調(diào)查發(fā)現(xiàn),如果每件童裝降價如果每件童裝降價4元,那么平均每天就可多售出元,那么平均每天就可多售出8件件.要想平均每天盈要想平均每天盈利利1200元元,那么每件童裝應(yīng)該降價多少元那么每件

12、童裝應(yīng)該降價多少元?單件利潤單件利潤 銷量銷量總利潤總利潤降價前降價前降價后降價后2021/8/2615用一元二次方程解決實際問題用一元二次方程解決實際問題1、銷售問題中主要的等量關(guān)系:、銷售問題中主要的等量關(guān)系:單件利潤單件利潤= 售價售價進(jìn)價進(jìn)價 總利潤總利潤=單件利潤單件利潤 銷量銷量3、列方程解決銷售問題的基本步驟為:審、設(shè)、列、解、驗、答、列方程解決銷售問題的基本步驟為:審、設(shè)、列、解、驗、答2、價格降則銷量增,、價格降則銷量增, 價格增則銷量降價格增則銷量降5、要注意題目中的限定條件、要注意題目中的限定條件4、計算時要先將方程化成一般式,優(yōu)先考慮十字相乘法、計算時要先將方程化成一般

13、式,優(yōu)先考慮十字相乘法2021/8/2616題題1:1:某商場禮品柜臺購進(jìn)大量賀卡某商場禮品柜臺購進(jìn)大量賀卡, ,一種賀一種賀卡平均每天可卡平均每天可銷售銷售500500張張, ,每張每張盈利盈利0.30.3元元, ,為為了盡快減少庫存了盡快減少庫存, ,商場決定采取適當(dāng)?shù)拇胧┥虉鰶Q定采取適當(dāng)?shù)拇胧? ,調(diào)查發(fā)現(xiàn)調(diào)查發(fā)現(xiàn), ,如果每如果每降價降價0.10.1元元, ,那么商場平均那么商場平均每天每天多售出多售出300300張張, ,商場要想每天商場要想每天盈利盈利160160元元, ,每張賀卡應(yīng)該每張賀卡應(yīng)該降價多少元降價多少元? ?課堂測試課堂測試2021/8/2617題題2:2:某商店進(jìn)了

14、一批服裝,每件某商店進(jìn)了一批服裝,每件成本為成本為5050元,元,如果按如果按每件每件6060元出售元出售,可,可銷售銷售800800件,如果件,如果每件每件提價提價5 5元出售,其銷售量就將元出售,其銷售量就將減少減少100100件件. .如果商店銷售這批服裝要如果商店銷售這批服裝要獲利獲利1200012000元元, ,那么那么這種服裝售價應(yīng)定為多少元這種服裝售價應(yīng)定為多少元? ?該商店應(yīng)進(jìn)這該商店應(yīng)進(jìn)這種服裝多少件種服裝多少件? ?課堂測試課堂測試2021/8/2618銷售問題n21.某商場銷售一批名牌襯衫某商場銷售一批名牌襯衫,現(xiàn)在平均每天能售出現(xiàn)在平均每天能售出20件件,每件盈利每件盈

15、利40元元.為了盡快減少庫存為了盡快減少庫存,商場決定采取商場決定采取降價措施降價措施.經(jīng)調(diào)查發(fā)現(xiàn)經(jīng)調(diào)查發(fā)現(xiàn):如果這種襯衫的售價每降低如果這種襯衫的售價每降低1元時元時,平均每天能多售出平均每天能多售出2件件.商場要想平均每天盈利商場要想平均每天盈利1200元元,每件襯衫應(yīng)降價多少元每件襯衫應(yīng)降價多少元?源于生活,服務(wù)于生活得根據(jù)題意元設(shè)每件襯衫應(yīng)降價解,:x.1200)1220)(40(xx. 020030:2xx整理得得解這個方程,.10,2021xx.20,:元應(yīng)降價為了盡快減少庫存答.40220,60220 xx或2021/8/26193(能力提升)(能力提升).百貨大摟服裝柜在銷售中

16、發(fā)百貨大摟服裝柜在銷售中發(fā)現(xiàn):現(xiàn):“七彩七彩”牌童裝平均每天可售出牌童裝平均每天可售出20件,件,每件盈利每件盈利40元元.為了迎接為了迎接“元旦元旦”,商場決定,商場決定采取適當(dāng)?shù)慕祪r措施,擴大銷售量,增加盈采取適當(dāng)?shù)慕祪r措施,擴大銷售量,增加盈利,減少庫存利,減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價裝降價1元,那么平均每天就可多售出元,那么平均每天就可多售出2件件.(1)要想平均每天銷售這種童裝上盈利)要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價多少元?元,那么每件童裝應(yīng)降價多少元?(2)用配方法說明:要想盈利最多,每件童)用配方法說明:要想盈利

17、最多,每件童裝應(yīng)降價多少元?裝應(yīng)降價多少元?2021/8/2620n 22. 22. 某商店從廠家以每件某商店從廠家以每件2121元的價格購進(jìn)一批元的價格購進(jìn)一批商品商品, ,若每件商品售價為若每件商品售價為x x元元, ,則每天可賣出則每天可賣出(350-(350-10 x)10 x)件件, ,但物價局限定每件商品加價不能超過進(jìn)價但物價局限定每件商品加價不能超過進(jìn)價的的20%.20%.商店要想每天賺商店要想每天賺400400元元, ,需要賣出多少件商需要賣出多少件商品品? ?每件商品的售價應(yīng)為多少元每件商品的售價應(yīng)為多少元? ?開啟 智慧銷售問題得根據(jù)題意元設(shè)每件商品的售價應(yīng)為解,:x.40

18、0)10350)(21(xx. 077556:2xx整理得得解這個方程,.31,2521xx.25:元每件商品的售價應(yīng)為答.,31, 2 .25%2012131舍去不合題意xx2021/8/26212:解題過程分析:解題過程分析:商品單件利潤商品單件利潤商品件數(shù)商品件數(shù)商品總利潤商品總利潤總結(jié)與提高總結(jié)與提高1:利潤問題公式:利潤問題公式:1:仔細(xì)審讀找出貫穿全題的等量關(guān)系。:仔細(xì)審讀找出貫穿全題的等量關(guān)系。2:分析題中相關(guān)數(shù)量相之間關(guān)系,適當(dāng)設(shè)未知數(shù),:分析題中相關(guān)數(shù)量相之間關(guān)系,適當(dāng)設(shè)未知數(shù), 并用含未知數(shù)的代數(shù)式表示相關(guān)的量,從而列出方程并用含未知數(shù)的代數(shù)式表示相關(guān)的量,從而列出方程3:整理方程并解出方程。:整理方程并解出方程。4:結(jié)合題中實際意義,對方程的根取舍。:結(jié)合題中實際意義,對方程的根取舍。5:總結(jié)作答。:總結(jié)作答。單件單件利潤利潤=售價售價進(jìn)價進(jìn)價2021/8/2622 = = 售價售價進(jìn)價進(jìn)價售價、進(jìn)價、利潤的關(guān)系式:售價、進(jìn)價、利潤的關(guān)系式:單件單件利潤利潤進(jìn)價、利潤、利潤率的關(guān)系進(jìn)價、利潤、利潤率的關(guān)系:利潤率利潤率= 進(jìn)價進(jìn)價單件利潤單件利潤100% 標(biāo)價、折扣數(shù)、商品售價關(guān)系 :售價售

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論