版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、初等函數(shù)的連續(xù)性初等函數(shù)的連續(xù)性一、四則運(yùn)算的連續(xù)性一、四則運(yùn)算的連續(xù)性定理定理1 1.)0)()()(),()(),()(,)(),(000處也連續(xù)處也連續(xù)在點(diǎn)在點(diǎn)則則處連續(xù)處連續(xù)在點(diǎn)在點(diǎn)若函數(shù)若函數(shù)xxgxgxfxgxfxgxfxxgxf 例如例如,),(cos,sin內(nèi)連續(xù)內(nèi)連續(xù)在在xx.csc,sec,cot,tan在其定義域內(nèi)連續(xù)在其定義域內(nèi)連續(xù)故故xxxx二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性二、反函數(shù)與復(fù)合函數(shù)的連續(xù)性定理定理2 2 嚴(yán)格單調(diào)的連續(xù)函數(shù)必有嚴(yán)格單調(diào)的連嚴(yán)格單調(diào)的連續(xù)函數(shù)必有嚴(yán)格單調(diào)的連續(xù)反函數(shù)續(xù)反函數(shù). .例如例如,2,2sin上單調(diào)增加且連續(xù)上單調(diào)增加且連續(xù)在在 xy.
2、1 , 1arcsin上也是單調(diào)增加且連續(xù)上也是單調(diào)增加且連續(xù)在在故故 xy;1 , 1arccos上單調(diào)減少且連續(xù)上單調(diào)減少且連續(xù)在在同理同理 xy.,cot,arctan上單調(diào)且連續(xù)上單調(diào)且連續(xù)在在 xarcyxy反三角函數(shù)在其定義域內(nèi)皆連續(xù)反三角函數(shù)在其定義域內(nèi)皆連續(xù).定理定理3 3).(lim)()(lim,)(,)(lim000 xfafxfaufaxxxxxxx 則有則有連續(xù)連續(xù)在點(diǎn)在點(diǎn)函數(shù)函數(shù)若若證證,)(連續(xù)連續(xù)在點(diǎn)在點(diǎn)auuf .)()(, 0, 0成立成立恒有恒有時(shí)時(shí)使當(dāng)使當(dāng) afufau,)(lim0axxx 又又,0, 0, 00時(shí)時(shí)使當(dāng)使當(dāng)對(duì)于對(duì)于 xx.)(成立成立
3、恒有恒有 auax將上兩步合起來將上兩步合起來:,0, 0, 00時(shí)時(shí)使當(dāng)使當(dāng) xx)()()()(afxfafuf .成立成立 )()(lim0afxfxx ).(lim0 xxx 意義意義1.在定理的條件下,極限符號(hào)可以與函數(shù)符在定理的條件下,極限符號(hào)可以與函數(shù)符號(hào)互換,即極限號(hào)可以穿過外層函數(shù)符號(hào)直號(hào)互換,即極限號(hào)可以穿過外層函數(shù)符號(hào)直接取在內(nèi)層,接取在內(nèi)層,.)(. 2的理論依據(jù)的理論依據(jù)變量代換變量代換xu 注注1.定理的條件:定理的條件:內(nèi)層函數(shù)有極限,外層函數(shù)內(nèi)層函數(shù)有極限,外層函數(shù) 在極限值點(diǎn)處連續(xù)在極限值點(diǎn)處連續(xù)可可得得類類似似的的定定理理換換成成將將 xxx0. 2例例1
4、1.)1ln(lim0 xxx 求求解解xxx10)1ln(lim 原式原式)1(limln10 xxx eln . 1 例例2 2.1lim0 xexx 求求解解,1yex 令令),1ln(yx 則則. 0,0yx時(shí)時(shí)當(dāng)當(dāng))1ln(lim0yyy 原式原式y(tǒng)yy10)1ln(1lim . 1 同理可得同理可得.ln1lim0axaxx 定理定理4 4.)(,)(,)(,)(00000也連續(xù)也連續(xù)在點(diǎn)在點(diǎn)則復(fù)合函數(shù)則復(fù)合函數(shù)連續(xù)連續(xù)在點(diǎn)在點(diǎn)而函數(shù)而函數(shù)且且連續(xù)連續(xù)在點(diǎn)在點(diǎn)設(shè)函數(shù)設(shè)函數(shù)xxxfyuuufyuxxxxu 注意注意定理定理4是定理是定理3的特殊情況的特殊情況.例如例如,), 0()0
5、,(1內(nèi)連續(xù)內(nèi)連續(xù)在在 xu,),(sin內(nèi)連續(xù)內(nèi)連續(xù)在在 uy.), 0()0,(1sin內(nèi)連續(xù)內(nèi)連續(xù)在在 xy三、初等函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性三角函數(shù)及反三角函數(shù)在它們的定義域內(nèi)是三角函數(shù)及反三角函數(shù)在它們的定義域內(nèi)是連續(xù)的連續(xù)的.)1, 0( aaayx指數(shù)函數(shù)指數(shù)函數(shù);),(內(nèi)單調(diào)且連續(xù)內(nèi)單調(diào)且連續(xù)在在)1, 0(log aaxya對(duì)數(shù)函數(shù)對(duì)數(shù)函數(shù);), 0(內(nèi)單調(diào)且連續(xù)內(nèi)單調(diào)且連續(xù)在在 xy xaalog ,uay .log xua ,), 0(內(nèi)連續(xù)內(nèi)連續(xù)在在 ,不同值不同值討論討論 (均在其定義域內(nèi)連續(xù)均在其定義域內(nèi)連續(xù) )定理定理5 5 基本初等函數(shù)在定義域內(nèi)是連續(xù)的基
6、本初等函數(shù)在定義域內(nèi)是連續(xù)的. .定理定理6 6 一切初等函數(shù)在其一切初等函數(shù)在其定義區(qū)間定義區(qū)間內(nèi)都是連內(nèi)都是連續(xù)的續(xù)的. .定義區(qū)間是指包含在定義域內(nèi)的區(qū)間定義區(qū)間是指包含在定義域內(nèi)的區(qū)間. .注意注意 1. 初等函數(shù)僅在其定義區(qū)間內(nèi)連續(xù)初等函數(shù)僅在其定義區(qū)間內(nèi)連續(xù), 在在其定義域內(nèi)不一定連續(xù)其定義域內(nèi)不一定連續(xù);例如例如, 1cos xy,4,2, 0: xD這些孤立點(diǎn)的鄰域內(nèi)沒有定義這些孤立點(diǎn)的鄰域內(nèi)沒有定義.,)1(32 xxy, 1, 0: xxD及及在在0點(diǎn)的鄰域內(nèi)沒有定義點(diǎn)的鄰域內(nèi)沒有定義.), 1上連續(xù)上連續(xù)函數(shù)在區(qū)間函數(shù)在區(qū)間注意注意2. 初等函數(shù)求極限的方法初等函數(shù)求極限
7、的方法代入法代入法.)()()(lim000定義區(qū)間定義區(qū)間 xxfxfxx例例3 求求xxsinlnlim2 解解是是初初等等函函數(shù)數(shù)xysinln 它的一個(gè)定義區(qū)間是它的一個(gè)定義區(qū)間是), 0( ), 0(20 x而而2sinlnsinlnlim2 xx0 例例4 4.11lim20 xxx 求求解解)11()11)(11(lim2220 xxxxx原式原式11lim20 xxx20 . 0 例例5 求求)1arcsin(lim2xxxx 解解 都都和和時(shí),時(shí),當(dāng)當(dāng)221xxxx不能應(yīng)用差的極限運(yùn)算法則,須變形不能應(yīng)用差的極限運(yùn)算法則,須變形先分子有理化,然后再求極限先分子有理化,然后再求極限)1(lim2xxxx xxxxxxxx 1)1)(1(lim2221111lim1lim22 xxxxxx21 )1arcsin(lim2xxxx )1(limarcsin2xxxx 621arcsin 四、小結(jié)四、小結(jié)連續(xù)函數(shù)的和差積商的連續(xù)性連續(xù)函數(shù)的和差積商的連續(xù)性.反函數(shù)的連續(xù)性反函數(shù)的連續(xù)性.復(fù)合函數(shù)的連續(xù)性復(fù)合函數(shù)的連續(xù)性.初等函數(shù)的連續(xù)性初等函數(shù)的連續(xù)性.定義區(qū)間與定義域的區(qū)別定義區(qū)間與定義域的區(qū)別;求極限的又一種方法求極限的又一種方法.思考題思考題思考題解答思考題解答21)(xxg 0, 10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標(biāo)準(zhǔn)消防中介服務(wù)協(xié)議模板版B版
- 2024-2030年中國孕婦營養(yǎng)保健品行業(yè)營銷模式及發(fā)展競爭力分析報(bào)告
- 2024-2030年中國大型購物中心行業(yè)管理經(jīng)營模式及投資規(guī)劃分析報(bào)告
- 2024-2030年中國單寧酸行業(yè)產(chǎn)銷需求與投資效益預(yù)測(cè)報(bào)告
- 2024年版押金協(xié)議附加條款一
- 湄洲灣職業(yè)技術(shù)學(xué)院《輕化工程AUTOCAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山職業(yè)技術(shù)學(xué)院《商業(yè)銀行模擬實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 茅臺(tái)學(xué)院《知識(shí)產(chǎn)權(quán)法導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年版租賃合同租金調(diào)整機(jī)制分析
- 茅臺(tái)學(xué)院《黑白攝影》2023-2024學(xué)年第一學(xué)期期末試卷
- PE管道定向鉆穿越公路工程施工方案
- 中考英語閱讀理解:圖表類(附參考答案)
- 2023通勤車輛危險(xiǎn)源評(píng)估標(biāo)準(zhǔn)
- 餐廚廢棄物處理記錄表
- GSV2.0反恐安全管理手冊(cè)
- 物聯(lián)網(wǎng)設(shè)計(jì)實(shí)戰(zhàn)智慧樹知到課后章節(jié)答案2023年下青島濱海學(xué)院
- 東建材市場調(diào)查報(bào)告
- 直流穩(wěn)壓電源的安裝與調(diào)試
- 選礦廠專題安全培訓(xùn)1
- 定制旅游行業(yè)深度洞察報(bào)告
- 治安案件報(bào)案登記表(標(biāo)準(zhǔn)范本)
評(píng)論
0/150
提交評(píng)論