版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上1、(2007年成都)已知:如圖,ABC中,ABC=45°,CDAB于D,BE平分ABC,且BEAC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G。 (!)求證:BF=AC; (2)求證:CE=BF; (3)CE與BC的大小關(guān)系如何?試證明你的結(jié)論。2.(2012內(nèi)江)已知ABC為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時(shí)針排列),使DAF=60°,連接CF(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:BD=CF;AC=CF+CD;(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且
2、其他條件不變時(shí),結(jié)論AC=CF+CD是否成立?若不成立,請(qǐng)寫(xiě)出AC、CF、CD之間存在的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),補(bǔ)全圖形,并直接寫(xiě)出AC、CF、CD之間存在的數(shù)量關(guān)系3(08河北中考第24題)如圖14-1,在ABC中,BC邊在直線l上,ACBC,且AC = BCEFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP(1)在圖14-1中,請(qǐng)你通過(guò)觀察、測(cè)量,猜想并寫(xiě)出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;(2)將EFP沿直線l向左平移到圖14-2的位置時(shí),EP交AC于點(diǎn)Q,連結(jié)AP,BQ猜想并寫(xiě)出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,請(qǐng)
3、證明你的猜想;(3)將EFP沿直線l向左平移到圖14-3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連結(jié)AP,BQ你認(rèn)為(2)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由4.如圖1、圖2、圖3,AOB,COD均是等腰直角三角形,AOBCOD90º,(1)在圖1中,AC與BD相等嗎,有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由。(2)若COD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,到達(dá)圖2的位置,請(qǐng)問(wèn)AC與BD還相等嗎,還具有那種位置關(guān)系嗎?為什么? (3)若COD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,到達(dá)圖3的位置,請(qǐng)問(wèn)AC與BD還相等嗎?還具有上問(wèn)中的位置關(guān)系嗎?為什么?考點(diǎn)
4、:旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);等腰直角三角形分析:(1)根據(jù)等腰三角形的兩腰相等進(jìn)行解答(2)證明DOBCOA,根據(jù)全等三角形的對(duì)應(yīng)邊相等進(jìn)行說(shuō)明解答:解:(1)相等在圖1中,AOB,COD均是等腰直角三角形,AOB=COD=90°,OA=OB,OC=OD,0A-0C=0B-OD,AC=BD;(2)相等在圖2中,0D=OC,DOB=COA,OB=OA,DOBCOA,BD=AC點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)、全等三角形的性質(zhì)以及旋轉(zhuǎn)問(wèn)題,在旋轉(zhuǎn)的過(guò)程中要注意哪些量是不變的,找出圖形中的對(duì)應(yīng)邊與對(duì)應(yīng)角5(2008河南)(9分)復(fù)習(xí)“全等三角形”的知識(shí)時(shí),老師布置了一道作業(yè)題:“
5、如圖,已知在ABC中,AB=AC,P是ABC內(nèi)部任意一點(diǎn),將AP繞A順時(shí)針旋轉(zhuǎn)至AQ,使QAP=BAC,連接BQ、CP,則BQ=CP”小亮是個(gè)愛(ài)動(dòng)腦筋的同學(xué),他通過(guò)對(duì)圖的分析,證明了ABQACP,從而證得BQ=CP之后,將點(diǎn)P移到等腰三角形ABC之外,原題中的條件不變,發(fā)現(xiàn)“BQ=CP”仍然成立,請(qǐng)你就圖給出證明考點(diǎn):全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)專題:證明題;探究型分析:此題的兩個(gè)小題思路是一致的;已知QAP=BAC,那么這兩個(gè)等角同時(shí)減去同一個(gè)角(2題是加上同一個(gè)角),來(lái)證得QAB=PAC;而根據(jù)旋轉(zhuǎn)的性質(zhì)知:AP=AQ,且已知AB=AC,即可由SAS證得ABQACP,進(jìn)而得出B
6、Q=CP的結(jié)論解答:證明:(1)QAP=BAC,QAP-BAP=BAC-BAP,即QAB=CAP;在BQA和CPA中, AQ=AP QAB=CAP AB=AC ,BQACPA(SAS);BQ=CP(2)BQ=CP仍然成立,理由如下:QAP=BAC,QAP+PAB=BAC+PAB,即QAB=PAC;在QAB和PAC中, AQ=AP QAB=PAC AB=AC ,QABPAC(SAS),BQ=CP點(diǎn)評(píng):此題主要考查了等腰三角形的性質(zhì)以及全等三角形的判定和性質(zhì);選擇并利用三角形全等是正確解答本題的關(guān)鍵5(2009山西太原)將一張透明的平行四邊形膠片沿對(duì)角線剪開(kāi),得到圖中的兩張三角形膠片和且。將這兩張
7、三角形膠片的頂點(diǎn)與頂點(diǎn)重合,把繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn),這時(shí)與相交于點(diǎn)當(dāng)旋轉(zhuǎn)至如圖位置,點(diǎn),在同一直線上時(shí),與的數(shù)量關(guān)系是 當(dāng)繼續(xù)旋轉(zhuǎn)至如圖位置時(shí),(1)中的結(jié)論還成立嗎?AO與DO存在怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì)專題:探究型分析:(1)根據(jù)外角的性質(zhì),得AFD=D+ABC,DCA=A+ABC,從而得出AFD=DCA;(2)成立由ABCDEF,可證明ABF=DEC則ABFDEC,從而證出AFD=DCA;(3)BOAD由ABCDEF,可證得點(diǎn)B在AD的垂直平分線上,進(jìn)而證得點(diǎn)O在AD的垂直平分線上,則直線BO是AD的垂直平分線,即BOAD解答:解:(1)AFD=D
8、CA(或相等)(2)AFD=DCA(或成立),理由如下:方法一:由ABCDEF,得AB=DE,BC=EF(或BF=EC),ABC=DEF,BAC=EDFABC-FBC=DEF-CBF,ABF=DEC在ABF和DEC中, AB=DE ABF=DEC BF=EC ABFDEC,BAF=EDCBAC-BAF=EDF-EDC,F(xiàn)AC=CDFAOD=FAC+AFD=CDF+DCA,AFD=DCA方法二:連接AD同方法一ABFDEC,AF=DC由ABCDEF,得FD=CA在AFDDCA, AF=DC FD=CA AD=DA AFDDCA,AFD=DCA(3)如圖,BOAD方法一:由ABCDEF,點(diǎn)B與點(diǎn)E
9、重合,得BAC=BDF,BA=BD點(diǎn)B在AD的垂直平分線上,且BAD=BDAOAD=BAD-BAC,ODA=BDA-BDF,OAD=ODAOA=OD,點(diǎn)O在AD的垂直平分線上直線BO是AD的垂直平分線,BOAD方法二:延長(zhǎng)BO交AD于點(diǎn)G,同方法一,OA=OD在ABO和DBO中, AB=DB BO=BO OA=OD ABODBO,ABO=DBO在ABG和DBG中, AB=DB ABG=DBG BG=BG ABGDBG,AGB=DGB=90°BOAD點(diǎn)評(píng):本題考查了三角形全等的判定和性質(zhì)以及旋轉(zhuǎn)的性質(zhì),是基礎(chǔ)知識(shí)要熟練掌握例1 正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE
10、+DF=EF,求EAF的度數(shù). 考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì)分析:延長(zhǎng)EB使得BG=DF,易證ABGADF(SAS)可得AF=AG,進(jìn)而求證AEGAEF可得EAG=EAF,再求出EAG+EAF=90°即可解題解答:解:延長(zhǎng)EB使得BG=DF,在ABG和ADF中,由 AB=AD ABG=ADF=90° BG=DF ,可得ABGADF(SAS),DAF=BAG,AF=AG,又EF=DF+BE=EB+BG=EG,AE=AE,AEGAEF(SSS),EAG=EAF,DAF+EAF+BAE=90°EAG+EAF=90°,EAF=45
11、76;答:EAF的角度為45°點(diǎn)評(píng):本題考查了正方形各內(nèi)角均為直角,考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角相等的性質(zhì),本題中求證EAG=EAF是解題的關(guān)鍵例2 D為等腰斜邊AB的中點(diǎn),DMDN,DM,DN分別交BC,CA于點(diǎn)E,F。(1) 當(dāng)繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證DE=DF。(2) 若AB=2,求四邊形DECF的面積??键c(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);等腰直角三角形專題:計(jì)算題分析:(1)連CD,根據(jù)等腰直角三角形的性質(zhì)得到CD平分ACB,CDAB,A=45°,CD=DA,則BCD=45°,CDA=90°,由DMDN得EDF=90
12、176;,根據(jù)等角的余角相等得到CDE=ADF,根據(jù)全等三角形的判定易得DCEADF,即可得到結(jié)論;(2)由DCEADF,則SDCE=SADF,于是四邊形DECF的面積=SACD,由而AB=2可得CD=DA=1,根據(jù)三角形的面積公式易求得SACD,從而得到四邊形DECF的面積解答:解:(1)連CD,如圖,D為等腰RtABC斜邊AB的中點(diǎn),CD平分ACB,CDAB,A=45°,CD=DA,BCD=45°,CDA=90°,DMDN,EDF=90°,CDE=ADF,(圖1)(圖2)(圖3)在DCE和ADF中, DCE=DAF DC=DA CDE=ADF ,DC
13、EADF,DE=DF;(2)DCEADF,SDCE=SADF,四邊形DECF的面積=SACD,而AB=2,CD=DA=1,四邊形DECF的面積=SACD=1 2 CDDA=1 2 點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角也考查了等腰直角三角形的性質(zhì)以及全等三角形的判定與性質(zhì)6、已知四邊形中,繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明7(西城09年一模
14、)已知:PA=,PB=4,以AB為一邊作 正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).(1)如圖,當(dāng)APB=45°時(shí),求AB及PD的長(zhǎng);(2)當(dāng)APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)APB的大小.圖1 圖2 圖3(I)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是 ; 此時(shí) ; (II)如圖2,點(diǎn)M、N邊AB、AC上,且當(dāng)DMDN時(shí),猜想(I)問(wèn)的兩個(gè)結(jié)論還成立嗎?寫(xiě)出例8(2005年馬尾)用兩個(gè)全等的等邊三角形ABC和ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊合,使三角尺的60°角的頂點(diǎn)與點(diǎn)
15、A重合,兩邊分別與AB,AC重合.將三角尺繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).(1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD相交于點(diǎn)E,F(xiàn)時(shí),(如圖131),通過(guò)觀察或測(cè)量BE,CF的長(zhǎng)度,你能得出什么結(jié)論?并證明你的結(jié)論;(2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長(zhǎng)線相交于點(diǎn)E,F(xiàn)時(shí)(如圖132),你在(1)中得到的結(jié)論還成立嗎?簡(jiǎn)要說(shuō)明理由.考點(diǎn):菱形的性質(zhì);三角形的面積;全等三角形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì)分析:(1)利用全等三角形的判定得出ABEACF即可得出答案;(2)根據(jù)已知可以得出BAE=CAF,進(jìn)而求出ABEACF即可;(3)利用四邊形AECF的面積S=SAEC+SACF=SAEC+
16、SABE=SABC求出即可解答:解:(1)得出結(jié)論是:BE=CF,證明:BAC=EAF=60°,BAC-EAC=EAF-EAC,即:BAE=CAF,又AB=AC,ABE=ACF=60°, BAE=CAF AB=AC ABE=ACF ,ABEACF(ASA),BE=CF,(2)還成立,證明:BAC=EAF=60°,BAC+EAC=EAF+EAC,即BAE=CAF,又AB=AC,ABE=ACF=60°,即 BAE=CAF AB=AC ABE=ACF ,ABEACF(ASA),BE=CF,(3)證明:ABEACF,SABE=SACF,四邊形AECF的面積S=S
17、AEC+SACF=SAEC+SABE=SABC;而SABC=1 2 S菱形ABCD,S=1 2 S菱形ABCD點(diǎn)評(píng):此題主要考查了全等三角形的判定以及四邊形面積,熟練利用全等三角形判定求出是解題關(guān)鍵解:(1)BE=CF. 證明:在ABE和ACF中, BAE+EAC=CAF+EAC=60°, BAE=CAF.AB=AC,B=ACF=60°,ABEACF(ASA). BE=CF. (2)BE=CF仍然成立. 根據(jù)三角形全等的判定公理,同樣可以證明ABE和ACF8、兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結(jié)DC(1
18、)請(qǐng)找出圖2中的全等三角形,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);(2)證明:DCBE考點(diǎn):;專題:圖1圖2DCEAB分析:(1)此題根據(jù)ABC與AED均為等腰直角三角形,容易得到全等條件證明ABEACD;(2)根據(jù)(1)的結(jié)論和已知條件可以證明DCBE 解答:證明:(1)ABC與AED均為等腰直角三角形,AB=AC,AE=AD,BAC=EAD=90°BAC+CAE=EAD+CAE即BAE=CAD,在ABE與ACD中,AB=ACBAE=CADAE=ADABEACD(2)ABEACD,ACD=ABE=45°又ACB=45°,BCD=ACB+ACD=90
19、176;DCBE點(diǎn)評(píng):此題是一個(gè)實(shí)際應(yīng)用問(wèn)題,利用全等三角形的性質(zhì)與判定來(lái)解決實(shí)際問(wèn)題,關(guān)鍵是理解題意,得9、 正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE+DF=EF,求EAF的度數(shù). 考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì)分析:延長(zhǎng)EB使得BG=DF,易證ABGADF(SAS)可得AF=AG,進(jìn)而求證AEGAEF可得EAG=EAF,再求出EAG+EAF=90°即可解題解答:解:延長(zhǎng)EB使得BG=DF,在ABG和ADF中,由 AB=AD ABG=ADF=90° BG=DF ,可得ABGADF(SAS),DAF=BAG,AF=AG,又EF=DF
20、+BE=EB+BG=EG,AE=AE,AEGAEF(SSS),EAG=EAF,DAF+EAF+BAE=90°EAG+EAF=90°,EAF=45°答:EAF的角度為45°點(diǎn)評(píng):本題考查了正方形各內(nèi)角均為直角,考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角相等的性質(zhì),本題中求證EAG=EAF是解題的關(guān)鍵7、D為等腰斜邊AB的中點(diǎn),DMDN,DM,DN分別交BC,CA于點(diǎn)E,F。當(dāng)繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證DE=DF。若AB=2,求四邊形DECF的面積。10、如圖,已知AB=CD=AE=BC+DE=2,ABC=AED=90°,求五邊形ABCDE的面
21、積 考點(diǎn):全等三角形的判定與性質(zhì)專題:應(yīng)用題分析:可延長(zhǎng)DE至F,使EF=BC,可得ABCAEF,連AC,AD,AF,可將五邊形ABCDE的面積轉(zhuǎn)化為兩個(gè)ADF的面積,進(jìn)而求出結(jié)論解答:解:延長(zhǎng)DE至F,使EF=BC,連AC,AD,AF,AB=CD=AE=BC+DE,ABC=AED=90°,CD=EF+DE=DF,在RtABC與RtAEF中, AB=AE ABC=AEF BC=EF RtABCRtAEF(SAS),AC=AF,在ACD與AFD中, AC=AF CD=DF AD=AD ACDAFD(SSS),SABCDE=2SADF=2×1 2 DFAE=2×1 2
22、 ×2×2=4點(diǎn)評(píng):本題主要考查了全等三角形的判定及性質(zhì)以及三角形面積的計(jì)算,應(yīng)熟練掌握五、旋轉(zhuǎn)例1 正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE+DF=EF,求EAF的度數(shù). 將三角形ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90度,至三角形ABG則GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以EAF=GAE=BAE+GAB=BAE+DAF又EAF+BAE+DAF=90所以EAF=45度 (1)如圖1,現(xiàn)有一正方形ABCD,將三角尺的指直角頂點(diǎn)放在A點(diǎn)處,兩條直角邊也與CB的延長(zhǎng)線、DC分別交于點(diǎn)E、F請(qǐng)你通過(guò)觀察、測(cè)量,判斷AE與
23、AF之間的數(shù)量關(guān)系,并說(shuō)明理由(2)將三角尺沿對(duì)角線平移到圖2的位置,PE、PF之間有怎樣的數(shù)量關(guān)系,并說(shuō)明理由(3)如果將三角尺旋轉(zhuǎn)到圖3的位置,PE、PF之間是否還具有(2)中的數(shù)量關(guān)系?如果有,請(qǐng)說(shuō)明理由如果沒(méi)有,那么點(diǎn)P在AC的什么位置時(shí),PE、PF才具有(2)中的數(shù)量關(guān)系考點(diǎn):正方形的性質(zhì);全等三角形的判定與性質(zhì)專題:幾何綜合題分析:(1)證明ABEADF可推出AE=AF(2)本題要借助輔助線的幫助過(guò)點(diǎn)P作PMBC于M,PNDC于N,證明PMEPNF可推出PE=PF(3)PE、PF不具有(2)中的數(shù)量關(guān)系當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PE,PF才具有(2)中的數(shù)量關(guān)系解答:解:(1)如圖1,
24、AE=AF理由:證明ABEADF(ASA)(2)如圖2,PE=PF理由:過(guò)點(diǎn)P作PMBC于M,PNDC于N,則PM=PN由此可證得PMEPNF(ASA),從而證得PE=PF(3)PE、PF不具有(2)中的數(shù)量關(guān)系當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PE、PF才具有(2)中的數(shù)量關(guān)系考點(diǎn):正方形的性質(zhì);全等三角形的判定與性質(zhì)專題:幾何綜合題分析:(1)證明ABEADF可推出AE=AF(2)本題要借助輔助線的幫助過(guò)點(diǎn)P作PMBC于M,PNDC于N,證明PMEPNF可推出PE=PF(3)PE、PF不具有(2)中的數(shù)量關(guān)系當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PE,PF才具有(2)中的數(shù)量關(guān)系解答:解:(1)如圖1,AE=AF理由
25、:證明ABEADF(ASA)(2)如圖2,PE=PF理由:過(guò)點(diǎn)P作PMBC于M,PNDC于N,則PM=PN由此可證得PMEPNF(ASA),從而證得PE=PF(3)PE、PF不具有(2)中的數(shù)量關(guān)系當(dāng)點(diǎn)P在AC的中點(diǎn)時(shí),PE、PF才具有(2)中的數(shù)量關(guān)系點(diǎn)評(píng):本題考查的是正方形的性質(zhì)以及全等三角形的判定例8(2005年馬尾)用兩個(gè)全等的等邊三角形ABC和ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊合,使三角尺的60°角的頂點(diǎn)與點(diǎn)A重合,兩邊分別與AB,AC重合.將三角尺繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).(1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD相交于點(diǎn)E,F(xiàn)時(shí),(
26、如圖131),通過(guò)觀察或測(cè)量BE,CF的長(zhǎng)度,你能得出什么結(jié)論?并證明你的結(jié)論;(2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長(zhǎng)線相交于點(diǎn)E,F(xiàn)時(shí)(如圖132),你在(1)中得到的結(jié)論還成立嗎?簡(jiǎn)要說(shuō)明理由.解:(1)BE=CF. 證明:在ABE和ACF中, BAE+EAC=CAF+EAC=60°, BAE=CAF.AB=AC,B=ACF=60°,ABEACF(ASA). BE=CF. (2)BE=CF仍然成立. 根據(jù)三角形全等的判定公理,同樣可以證明ABE和ACF10、用兩個(gè)全等的等邊三角形ABC和ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊
27、合,使三角尺的60°角的頂點(diǎn)與點(diǎn)A重合,兩邊分別與AB、AC重合.將三角尺繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn).(1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC、CD相交于點(diǎn)E、F時(shí)(如圖所示),通過(guò)觀察或測(cè)量BE、CF的長(zhǎng)度,你能得出什么結(jié)論?并證明你的結(jié)論;(2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC、CD的延長(zhǎng)線相交于點(diǎn)E、F時(shí)(如圖所示),你在(1)中得到的結(jié)論還成立嗎?說(shuō)明理由。11已知AOB=90°,AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與點(diǎn)C重合,它的兩條直角邊分別與OA、OB或它們的反向延長(zhǎng)線相交于D、E。當(dāng)三角形繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖1),易證:CD=CE當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),在圖2圖3這兩種情況下,上述結(jié)論是否成立,請(qǐng)給予證明,若不成立,請(qǐng)寫(xiě)出你的猜想,不需證明。3、如圖,正方形ABCD的邊長(zhǎng)為1,G為CD邊上一動(dòng)點(diǎn)(點(diǎn)G與C、D不重合), 以C為一邊向正方形ABCD外作正方形GCEF,連接DE交BG的延長(zhǎng)線于H。(1)說(shuō)明:BCGDCE;(2)BG與CD有何關(guān)系?為什么
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度單身公寓兩室一廳租賃與合同解除條件合同3篇
- 2024施工合同管理及綠色施工技術(shù)指導(dǎo)協(xié)議3篇
- 2024年英文版住宅購(gòu)買協(xié)議指南版B版
- 2024年版權(quán)許可使用合同(文學(xué)作品)
- 2024年英文離婚合同標(biāo)準(zhǔn)化文件一
- 2024年股權(quán)轉(zhuǎn)讓預(yù)定合同模板版B版
- 2024年職業(yè)傷害賠償金合同:勞動(dòng)者權(quán)益保障
- 2024挖機(jī)工程智能化控制系統(tǒng)集成合同3篇
- 安全防護(hù)行業(yè)美工工作總結(jié)
- 娛樂(lè)節(jié)目市場(chǎng)推廣總結(jié)
- 2024-2030年中國(guó)兒童內(nèi)衣行業(yè)運(yùn)營(yíng)狀況及投資前景預(yù)測(cè)報(bào)告
- 吉首大學(xué)《高等數(shù)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 打印和復(fù)印服務(wù)協(xié)議
- 針灸習(xí)題庫(kù)(附參考答案)
- 前置胎盤手術(shù)配合
- 期末試卷(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 2024年中國(guó)電信服務(wù)合同標(biāo)準(zhǔn)文本
- 四川省成都市2023-2024學(xué)年高一上學(xué)期語(yǔ)文期末考試試卷(含答案)
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)數(shù)學(xué)期末必刷壓軸60題(原卷版)
- 投標(biāo)述標(biāo)演講稿
- 企業(yè)名稱:個(gè)人防護(hù)用品(PPE)管理規(guī)定
評(píng)論
0/150
提交評(píng)論