-直梁彎曲時(shí)的內(nèi)力和應(yīng)力_第1頁(yè)
-直梁彎曲時(shí)的內(nèi)力和應(yīng)力_第2頁(yè)
-直梁彎曲時(shí)的內(nèi)力和應(yīng)力_第3頁(yè)
-直梁彎曲時(shí)的內(nèi)力和應(yīng)力_第4頁(yè)
-直梁彎曲時(shí)的內(nèi)力和應(yīng)力_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第七章直梁彎曲時(shí)的內(nèi)力和應(yīng)力一、填空題:1、梁產(chǎn)生彎曲變形時(shí)的受力特點(diǎn),是梁在過(guò)軸線的平面內(nèi)受到外力偶的作用或者受到和梁軸線相 的外力的作用.2、車床上的三爪盤將工件夾緊之后,工件夾緊局部對(duì)卡盤既不能有相對(duì)移動(dòng),也不能有相對(duì)轉(zhuǎn)動(dòng),這種形式白支座可簡(jiǎn)化為 支座.3、矩形截面梁彎曲時(shí),其橫截面上的剪力作用線必然 于外力并通過(guò)截面 c4、梁彎曲時(shí),其橫截面上的剪力作用線必然 于橫截面.5、梁彎曲時(shí),任一橫截面上的彎矩可通過(guò)該截面一側(cè)(左側(cè)或右側(cè))的外力確定,它等于該一側(cè)所有外力對(duì) 力矩的代數(shù)和.6、梁上某橫截面彎矩的正負(fù),可根據(jù)該截面附近的變形情況來(lái)確定,假設(shè)梁在該截面附近彎成上下,那么彎矩為正,反

2、之為負(fù).7、用截面法確定梁橫截面上的剪力時(shí),假設(shè)截面右側(cè)的外力合力向上,那么剪力為 .8、以梁橫截面右側(cè)的外力計(jì)算彎矩時(shí),規(guī)定外力矩是順時(shí)針轉(zhuǎn)向時(shí)彎矩的符號(hào)為 .9、將一懸臂梁的自重簡(jiǎn)化為均布載荷,設(shè)其載荷集度為q,梁長(zhǎng)為L(zhǎng),由此可知在距固定端L/2處的橫截面上的剪力為 ,固定端處橫截面上的彎矩為 .10、在梁的集中力偶左、右兩側(cè)無(wú)限接近的橫截面上,剪力相等,而彎矩那么發(fā)生,值等于梁上集中力偶的力偶矩.11、剪力圖和彎矩圖是通過(guò) 和 的函數(shù)圖象表示的.12、橋式起重機(jī)橫梁由左、右兩車輪支承,可簡(jiǎn)化為簡(jiǎn)支梁,梁長(zhǎng)為 L,起吊重量為P,吊 重位置距梁左、右兩端長(zhǎng)度分別為a、b,且ab,由此可知最大

3、剪力值為 .13、將一簡(jiǎn)支梁的自重簡(jiǎn)化為均布載荷作用而得出的最大彎矩值,要比簡(jiǎn)化為集中罰作用而的最大彎矩值14、由剪力和載荷集度之間的微分關(guān)系可知,剪力圖上的某點(diǎn)的 等于對(duì)應(yīng)于該點(diǎn)的載荷集度.15、設(shè)載荷集度q (X)為截面位置 X的連續(xù)函數(shù),那么 q (X)是彎矩M ( X)的 階導(dǎo)函數(shù).16、梁的彎矩圖為二次拋物線時(shí),假設(shè)分布載荷方向向上,那么彎矩圖為向 凸的拋物 線.17、彎矩圖的凹凸方向可由分布載荷的 符號(hào)確定.18、在梁的某一段內(nèi),假設(shè)無(wú)分布載荷q (X)的作用,那么剪力圖是 于X軸的直線.19、在梁的彎矩圖上,某一橫截面上的彎矩有極值(極大值或極小值),該極值必發(fā)生在對(duì)應(yīng)于剪力 的

4、橫截面上.20、由于在梁的集中力作用處,其截面左、右兩側(cè)的剪力會(huì)有一忽然變化,因此彎矩圖在此處形成的是一個(gè)具有 點(diǎn)的圖形狀.21、梁在發(fā)生彎曲變形的同時(shí)伴有剪切變形,這種平面彎曲稱為 彎曲.22、梁在純彎曲時(shí),其橫截面仍保持為平面,且與變形后的梁軸線相 .23、在一純彎曲梁段內(nèi),各橫截面上的剪力等于 ,而彎矩為常量.24、梁在彎曲時(shí)的中性軸,就是梁的 與橫截面的交線.25、梁彎曲時(shí)的中性軸必然通過(guò)其橫截面上的 那一點(diǎn).26、梁彎曲時(shí),其橫截面上的 最終合成的結(jié)果為彎矩.27、梁彎曲時(shí),其橫截面的 按直線規(guī)律變化,而沿橫截面的 那么均勻分 布.28、梁彎曲時(shí),橫截面中性軸上各點(diǎn)的正應(yīng)力等于零,而

5、距中性軸 處的各正應(yīng)力為最大.29、梁彎曲變形后,以中性層為界,靠 邊的一側(cè)縱向纖維受壓力作用 ,而靠 邊的一側(cè)縱向纖維受拉應(yīng)力作用.30、梁彎曲時(shí),在作用正彎矢I的梁段內(nèi),其中性層以上的各縱向纖維將發(fā)生單向 變形.31、等截面梁內(nèi)的最大正應(yīng)力總是出現(xiàn)在最大 所在的橫截面上.32、矩形截面梁在橫力彎曲時(shí),其橫截面上的剪應(yīng)力沿截面高度按 線規(guī)律分布.33、矩形截面梁在橫力彎曲時(shí),其橫截面上的剪應(yīng)力所在的點(diǎn)上 ,其正應(yīng)力為 34、矩形截面梁彎曲時(shí),其橫截面上最大剪應(yīng)力是平均剪應(yīng)力的 倍.35、一般情況下,彎曲時(shí)橫截面上最大剪應(yīng)力往往出現(xiàn)在 上各點(diǎn).36、在橫截面對(duì)稱于中性軸的等截面梁內(nèi),彎曲的最大

6、拉應(yīng)力和最大壓應(yīng)力的絕對(duì)值37、用抗拉強(qiáng)度和抗壓強(qiáng)度不相等的材料,如鑄鐵等制成的梁,其橫截面宜采用不對(duì)稱于中性軸的形狀,而使中性軸偏于受 纖維一側(cè).38、木梁或竹桿在橫力彎曲時(shí)往往出現(xiàn)縱向裂紋,這說(shuō)明梁的縱向截面上有 應(yīng) 力.39、對(duì)于橫截面高寬度比等于2的矩形截面梁,在當(dāng)截面豎放時(shí)和橫放時(shí)的抗彎水平之比和抗剪水平之比,分別為 和.40、面積相等的圓形、矩形和工字形截面的抗彎截面系數(shù)分別為此、W目和Wt,比擬其值的大小,其結(jié)論應(yīng)是 此比 W口,W工比 W目.41、由梁的彎曲正應(yīng)力分布規(guī)律可知 ,為了充分利用材料,應(yīng)盡可能將梁的材料聚集于離中性軸 處,從而提升梁的承載水平.42、由彎曲正應(yīng)力強(qiáng)度

7、條件可知,設(shè)法降低梁內(nèi)的最大彎矩,并盡可能提升梁截面的 系數(shù),即可提升梁的承水平.43、梁的截面形狀是否經(jīng)濟(jì)合理 ,其衡量標(biāo)準(zhǔn)在于梁截面的 系數(shù),即可提升梁的 承載水平.44、工程上用的魚腹梁、階梯軸等 ,其截面尺寸隨彎矩大小而變,這種截面變化的梁,往往就是近似的 梁.二、判斷題:1、以彎曲為主要變形的桿件,只要外力均作用在過(guò)軸的縱向平面內(nèi),桿件就有可能發(fā)生平面彎曲.2、一正方形截面的梁,當(dāng)外力作用在通過(guò)梁軸線的任一方位縱向平面內(nèi)時(shí),梁都將發(fā)生平面彎曲.3、梁發(fā)生平面彎曲時(shí),其軸線必然彎成位于外力作用面內(nèi)的平面曲線.4、通常將安裝在車床刀架上的車刀簡(jiǎn)化為懸臂梁.5、梁橫截面上的剪力,在數(shù)值上等

8、于作用在此截面任一側(cè)左側(cè)或右側(cè)梁上所有外力的代數(shù)和.6、用截面法確定梁橫截面的剪力或彎矩時(shí),假設(shè)分別取截面以左或以右為研究對(duì)象,那么所得到的剪力或彎矩的符號(hào)通常是相反的.7、研究梁橫截面上的內(nèi)力時(shí),沿橫截面假想地把梁橫截為左段梁或右段兩部份,由于原來(lái) 的梁處于平衡狀態(tài),所以作用于左段或右段上的外力垂直于梁軸線方向的投影之和為零,即各外力對(duì)截面形心之矩可相互抵消.8、簡(jiǎn)支梁假設(shè)僅作用一個(gè)集中力P,那么梁的最大剪力值不會(huì)超過(guò) P值. 9、梁的最大彎矩值必定出現(xiàn)在剪力為零的截面處.10、在簡(jiǎn)支梁上有一移動(dòng)的集中載荷作用,要使梁內(nèi)產(chǎn)生的彎矩為最大,此集中載荷并不一定作用在梁跨度中央.11、梁上某一橫截

9、面的彎矩等于作用于此截面任一側(cè)左側(cè)或右側(cè)梁上所有外力對(duì)截面形心力矩的代數(shù)和,利用此規(guī)律,可不列出平衡方程,就能直接確定橫截面彎矩值的大小.12、兩個(gè)簡(jiǎn)支梁的的跨度及所承受的載荷相同,但由于材料和橫截面面積不同,故梁的內(nèi)力剪力和彎矩就不一定相同.13、簡(jiǎn)支梁上有一集中力偶作用, 繪出其剪力圖,其圖象一定以集中力偶作用的位置為對(duì)稱. 14、假設(shè)梁某段內(nèi)各橫截面上的彎矩均為零,那么該段內(nèi)各橫截面上的剪力也均為零.15、假設(shè)梁某一段內(nèi)的橫截面只有彎矩而無(wú)剪力,那么梁在此段內(nèi)的彎矩、 剪力和載荷集度之間的微分關(guān)系不一定成立.16、在梁的某一段內(nèi),假設(shè)無(wú)載荷作用,即 q X = 0,那么由彎矩,剪力和載荷

10、集度之間的微分關(guān)系可知,彎矩圖一定是一斜直線.17、在梁某一段內(nèi)的各個(gè)橫截面上的,假設(shè)剪力均為零,那么該段內(nèi)的彎矩必為常量.18、在梁上作用的向下的均布載荷,即 q為負(fù)值,那么梁內(nèi)的剪力 Q也必為負(fù)值.19、在梁上某一段內(nèi)的分布載荷方向向下規(guī)定分布載荷方向向下不負(fù),這說(shuō)明彎矩圖曲線向上凸,其彎矩值必為正值.20、梁的彎矩圖上某一點(diǎn)的彎矩值為零,該點(diǎn)所對(duì)應(yīng)的剪力圖上的剪力值也一定為零.21、在梁上的剪力為零的地方,所對(duì)應(yīng)的彎矩圖的斜率也為零;反過(guò)來(lái),假設(shè)梁的彎矩圖斜率為零,那么所對(duì)應(yīng)的梁上的剪力也為零.22、承受均布載荷的懸臂梁,其彎矩圖為一條向上凸的二次拋物線,此曲線的頂點(diǎn)一定事在位于懸臂梁的

11、自由端所對(duì)應(yīng)的點(diǎn)處.23、從左向右檢查所繪剪力圖的正誤時(shí),可以看出,凡集中力作用處,剪力圖發(fā)生突變,突變值的大小與方向和集中力相同,假設(shè)集中力向上,那么剪力圖向上突變,突變值為集中力大小. 24、在梁上集中力偶作用處,其彎矩圖有突變,而所對(duì)應(yīng)的剪力圖為水平線,并由正值變?yōu)樨?fù)值或由負(fù)值變?yōu)檎?但其絕對(duì)值是相同的.25、運(yùn)發(fā)動(dòng)雙臂平行地靜懸于單杠 視為簡(jiǎn)支梁時(shí),無(wú)論兩手握在杠的何處,只要兩手的間矩不變,其兩手間的杠段的變形總是純彎曲.26、梁彎曲時(shí),不管梁產(chǎn)生的是純彎曲還是橫力彎曲,其變形前后的橫截面始終都為平面. 27、等截面直梁在純彎曲時(shí),橫截面保持為平面,但其形狀和尺寸略有變化.28、梁產(chǎn)

12、生純彎曲變形后,其軸線即變成了一段圓弧線.29、梁產(chǎn)生平面彎曲變形后,其軸線不會(huì)保持原長(zhǎng)度不變.30、梁彎曲時(shí),梁內(nèi)有一層既不受拉又不受壓的縱向纖維就是中性層.31、中性層是梁平面彎曲時(shí)纖維縮短區(qū)和纖維伸長(zhǎng)區(qū)的分界面.32、梁彎曲時(shí),梁的中性必定是橫截面的對(duì)稱軸.33、因梁產(chǎn)生的平面彎曲變形對(duì)稱于縱向?qū)ΨQ面,故中性層垂直于縱向?qū)ΨQ面.34、梁彎曲時(shí),其橫截面要繞中性軸旋轉(zhuǎn),而不會(huì)繞橫截面的邊緣旋轉(zhuǎn).35、彎曲正應(yīng)力公式是由矩形截面梁推導(dǎo)出的,故只適用于純彎曲,而不適用于橫力彎曲. 36、由于彎曲正應(yīng)力公式是由矩形截面梁推導(dǎo)出的,所以用于非矩形截面梁時(shí),那么不能滿足工程所需要的精度.37、梁彎曲

13、時(shí),可以認(rèn)為橫截面上只有拉應(yīng)力,并且均勻分布,其合成的結(jié)果將與截面邊緣的一集中力組成偶,此力偶的內(nèi)力偶矩即為彎矩.38、梁的橫截面上作用有負(fù)彎矩,其中性軸上側(cè)各點(diǎn)作用的是拉應(yīng)力,下側(cè)各點(diǎn)作用的是壓應(yīng)力.39、等截面梁彎曲時(shí)的最大拉應(yīng)力和最大壓應(yīng)力在數(shù)值上必定是相等的.40、等截面梁的最大彎曲正應(yīng)力不一定發(fā)生在最大彎矩的橫截面上距中性軸最遠(yuǎn)的各點(diǎn)處. 41、挑水時(shí)扁擔(dān)在其中部折斷,這是由于相應(yīng)的橫截面處的拉應(yīng)力到達(dá)了極限值.42、等截面梁的最大剪應(yīng)力一定位于剪力最大的橫截面上.43、T字形截面的鑄鐵梁,其最大打應(yīng)力總發(fā)生在彎矩絕對(duì)值為最大的橫截面上.44、T字形截面的鑄鐵梁,當(dāng)在全長(zhǎng)范圍內(nèi)作用有

14、正彎矩時(shí),其截面應(yīng)倒放,形較為合理些. 45、一 T字形截面鑄鐵梁內(nèi)的正彎矩最大值為M,負(fù)彎矩最大絕對(duì)值為 M,且M2 M此時(shí)梁截面應(yīng)正放成 T形才合理.46、矩形截面梁的純彎曲段內(nèi),甘橫截面上各點(diǎn)的剪應(yīng)力均等于零.47、矩形截面梁在橫力彎曲時(shí),梁內(nèi)正應(yīng)力為零的點(diǎn)處,其剪應(yīng)力一定為零.48、矩形截面梁彎曲時(shí), 其最大正應(yīng)力和最大剪應(yīng)力的點(diǎn)不一定在同一個(gè)橫截面上.49、矩形截面梁彎曲時(shí),橫截面上任意一瞇處的剪應(yīng)力方向均平行于橫截面上剪力的方向. 50、矩形截面梁的彎曲剪應(yīng)力沿截面高度變化,但不一定按二次拋物線規(guī)律變化.51、等截面梁的最大彎曲剪應(yīng)力不一定出現(xiàn)在剪力最大的橫截面中性軸上.52、對(duì)于

15、橫力彎曲的梁,假設(shè)其跨度和截面高度之比不大于5,那么用純彎曲建立的彎曲正應(yīng)力公式計(jì)算所得的正應(yīng)力,較之梁的真實(shí)正應(yīng)力的誤差很小.53、當(dāng)梁內(nèi)的最大拉應(yīng)力和最大壓應(yīng)力的絕對(duì)值相等時(shí),該梁的抗拉強(qiáng)度和抗壓強(qiáng)度必定相等.54、假設(shè)對(duì)脆性材料如鑄鐵等制成的T字形截面梁進(jìn)行強(qiáng)度校核,無(wú)論其受載情況如何,只要校核了危險(xiǎn)點(diǎn)的壓應(yīng)力即可.55、彎曲正應(yīng)力強(qiáng)度條件中的許用正應(yīng)力與軸向拉伸或壓縮強(qiáng)度條件中的許用正應(yīng)力是相同的.56、彎曲剪應(yīng)力強(qiáng)度條件中的許用剪應(yīng)力與扭轉(zhuǎn)強(qiáng)度條件中的許用剪應(yīng)力是相同的.57、比照用同一材料制成的實(shí)心圓截面梁和空心圓截面梁的強(qiáng)度,只要二者的外徑相同,那么它們承受外載或自重的水平一定都

16、是相同的.58、對(duì)于木梁,其順紋方向的抗剪水平較差,但因最大剪應(yīng)力發(fā)生在橫截面中性軸上,故剪切破壞不會(huì)沿順紋中性層發(fā)生.59、一全長(zhǎng)范圍內(nèi)有均布載荷作用的簡(jiǎn)支梁,假設(shè)左、右兩端支座各向內(nèi)移動(dòng)跨度的1/5,那么可使梁的承載水平提升為原來(lái)的5倍.由此可知,左、右兩端支座繼續(xù)向內(nèi)移時(shí) ,梁的承載水平將不斷提升.60、為了提升矩形截面梁的抗彎強(qiáng)度,增大橫截面的高度要比增大橫截面的寬度有效得多.三、選擇題:1、工程實(shí)際中產(chǎn)生彎曲變形的桿件,如火車機(jī)車輪軸、房屋建筑的樓板主梁,在得到計(jì)算簡(jiǎn)圖時(shí),需將其支承方式簡(jiǎn)化為:A、簡(jiǎn)支梁 B 、輪軸為外伸梁,樓板主梁為簡(jiǎn)支梁;C外伸梁 D 、輪軸為簡(jiǎn)支梁,樓板主梁為

17、外伸梁.2、用一截面將梁截為左、右兩段,在同一截面上的剪力、彎矩?cái)?shù)值是相等的,按靜力學(xué)作用與反作用公理,其符號(hào)是相反的,而按變形規(guī)定,那么剪力、彎矩的符號(hào)A、仍是相反的;、是剪力相反,彎矩一致;總是、是剪力一致,彎矩相反.3、在梁的集中力作用處,其左、右兩側(cè)無(wú)限接近的橫截面上的彎矩相同;、數(shù)值相等,符號(hào)相反;不相同;、符號(hào)一致,數(shù)值不相等.4、在梁的集中力作用處,其左、右兩側(cè)無(wú)限接近的橫截面上的剪力大小相等,符號(hào)相反;B 、大小相等,符號(hào)相同;符號(hào)有時(shí)都相同,有時(shí)不都相同;有大小改變趨勢(shì),但符號(hào)不變.5、指出圖示簡(jiǎn)支梁如下圖m-n截面上的彎矩及其符號(hào)是Pac/L; B 、Pac/L;、-Pbc

18、/L; D 、Pbc/LBna6、分析外伸梁 ABC如下圖的內(nèi)力時(shí),所得的結(jié)果是錯(cuò)誤的.3a2aA、AB段剪力為負(fù)值,BC段剪力為正值;B Qmax=2qa;C除A、C兩端點(diǎn)外,各段的彎矩均為負(fù)值;2D I M max |=4q a 7、列出梁ABCDE如下圖各梁段的剪力方程和彎矩方程,其分段要求應(yīng)是分為A B C D /EA、 AC和 CE段B 、 AG CD和 DE段C AR BD和 DE段 D、 AR BG CD和 DE段8、懸臂梁如下圖在集中力P1、P2作用下的彎矩表達(dá)式為.P1A、M (x) = P1 x(0OL);B M (x) = P2 xCX M (x) = P1 xM (x)

19、 = P2x - P1 ( L + x)2(0W xL);“ L、(0 w x ? 一),2(w x L;)2D M (x) = ( R + P2) x(0L)o9、外伸梁在均布載荷 q的作用如下圖下,指出內(nèi)力的特點(diǎn),其中是不正確的.A、圖對(duì)稱于中央截面;B、中央截面上 Q=aC圖對(duì)稱于中央截面;D、中央截面上 M=Q10、簡(jiǎn)支梁AB受集中力偶作用如下圖,通過(guò)內(nèi)力分析,假設(shè)認(rèn)為,那么是對(duì)的.A集中力偶作用在 A處或B處,桿內(nèi)無(wú)剪力;I M max|必出現(xiàn)在C處截面上;日集中力偶無(wú)論作用于何處,梁內(nèi)的最大彎矩值C集中力偶作用在 A或B處,M圖為矩形;D集中力偶無(wú)論作用于何處,梁內(nèi)的最大彎矩值|

20、Mmax|=m.11、由梁上載荷、剪力圖和彎矩圖三者間的關(guān)系,可概括一些規(guī)律性結(jié)論,如A、集中力彳用處,M圖發(fā)生轉(zhuǎn)折;集中力偶作用處,Q圖連續(xù);日 集中力彳用處,M圖連續(xù);集中力偶作用處,M圖不連續(xù);C集中力偶作用處,Q圖會(huì)有變化;D集中力偶作用處,所對(duì)應(yīng)的M圖在此處的左、右斜率將發(fā)生突變.12、一多跨梁AB 如下圖,使所受的集中力 P先后作用于C錢的左側(cè)和右側(cè),并分別作出其內(nèi)力圖,經(jīng)過(guò)比擬,得出的結(jié)論是對(duì)的.Pa ci Ba bA.M圖均不同;B、Q圖相同,M圖不同;C Q圖不同,M圖相同;D Q M圖均相同.13、向上吊起一鋼筋混凝土梁如下圖,梁長(zhǎng)為L(zhǎng),在梁的自重作用下,假設(shè)要保證梁內(nèi)不產(chǎn)

21、生正彎矩,那么繩索所系位置 x的最小值應(yīng)為.XXL 14、將一簡(jiǎn)支梁上的集中力 P分散成三種情況如下圖,以M1、M2、M3和M4分別表示前后四種情況的最大彎矩值,你認(rèn)為結(jié)論中是正確的.A M1AM2=M3AM4; BM1AM2AM3AM4;C M1AM2A M3=M4 D、M1 M2AM4AM3.(c)(d)15、受受力偶作用的外伸梁 ABC將外力偶m從所作用的C處移到D處如下圖時(shí),可能引起梁剪力和彎矩的最大值發(fā)生變化的情形才是正確的.A、最大剪力相同,最大彎矩不相同;日 最大剪力相同,最大彎矩相同;C最大剪力不相同,最大彎矩不相同;D最大剪力不相同,最大彎矩相同.16、一懸臂梁,左端固定,長(zhǎng)

22、為 4m,由其彎矩圖如下圖可知剪力圖為.l4mJA矩形;B 、三角形;C梯形;D 、零線剪力為零的各點(diǎn)連線17、從一長(zhǎng)4m的簡(jiǎn)支梁彎矩圖如下圖分析可知梁的受載情況為:A Nii,1mImIm1 O一Ira 一A、在x=1m和x=3m處,各有集中力 P=10kN向下作用;Ek在x=1m和x=3m處,各有集中力 P=20kN向下作用;在x=1m處,有集中力 P=20kN向下作用,在 x=3m處,各有集中力P =20kN向上作用;在x=1m處,有集中力 P=10kN向下作用,在 x=3m處,各有集中力P =10kN向上作用;18、分析簡(jiǎn)支梁如下圖的外力、內(nèi)力和變形情況,可知結(jié)論是錯(cuò)誤的.支座反力大小

23、為p;Ek剪力圖左、右對(duì)稱;梁中央截面上彎矩為零;D致變形狀態(tài)是沿梁的軸向由凸到凹.19、由一簡(jiǎn)支梁的彎矩圖如下圖得出梁在左、中、右三段上的剪力大小和正負(fù)依次是 .Im 1m 2 mA、20kN、0、一 10kN;日 10kN、0、一20kN;C 10kN、0、20kN; D 20kN、0、10kN.20.有一承受分布載荷的簡(jiǎn)支梁,該梁在所取的坐標(biāo)系Q和載荷集度q之間的微分關(guān)系為Bxy 如下圖中,彎矩 M剪力dxdxdxdx21、一受力彎曲的簡(jiǎn)支梁如下圖產(chǎn)生純彎曲變形的梁段應(yīng)是A AB 段; B 、BC 段;C CB段;D 、不存在.22、梁的純彎曲可在材料試驗(yàn)機(jī)上實(shí)現(xiàn),觀察純變形情況,可由表

24、及里地推斷:梁變形后,其橫截面吊一工 保持為平面,且垂直于變形后的梁軸線,橫截面只是繞 轉(zhuǎn)過(guò)了一個(gè)微小的角度.A梁的軸線;B 、梁軸線的曲線率中央;D 、橫截面自身的輪廓線.的.23、梁在純彎曲時(shí),其橫截面的正應(yīng)力變化規(guī)律與縱向纖維應(yīng)變的變化規(guī)律是A相同;B、相反;C、相似; D、完全無(wú)聯(lián)系.的.24、梁在平面彎曲時(shí),其中性軸與梁的縱向?qū)ΨQ面是相互A、平行;、垂直;C 、成任意夾角.25、梁在純彎曲時(shí),橫截面上由微內(nèi)力組成的一個(gè)垂直于橫截面的,最終可簡(jiǎn)化為彎A平面平行力系;B 、空間平行力系;C 、平面力偶系.26、梁彎曲時(shí),橫截面上離中性軸矩離相同的各點(diǎn)處正應(yīng)力是的.A相同;、隨截面形狀的不

25、同而不同;、有的地方相同,而有的地方不相同.27、矩形截面懸梁自由端受到力P的作用如下圖,其上A、B兩處的正應(yīng)力關(guān)系為A、 GA = 3 彷;B 、扇=6 彷;D 、 0A = 4 說(shuō).28、一矩形截面梁受力發(fā)生彎曲變形如下圖時(shí),在梁的處橫截面上將出現(xiàn)最大正 應(yīng)力.A、A; B 、B;C 、C;D 、D.29、一矩形截面梁受力彎曲如下圖后,未產(chǎn)生正應(yīng)力的梁段應(yīng)是A AB段; B 、BC段;C 、CD;D 、不存在的.B2P.30、一梁的橫截面為對(duì)稱的空心矩形如下圖,其抗彎截面系數(shù)33C BH bh;7J6h 622、BH bh;66 331 BH bhH 6631、梁在平面彎曲時(shí),其截面上的最

26、大拉、壓力絕對(duì)值 是不相等的.W應(yīng)為A圓形截面;B 、矩形截面;C T字形截面;D 、熱軋工字鋼.32、兩根木當(dāng)梁疊合在一起拼接面無(wú)粘膠時(shí),左、右兩端受到力偶的作用如下圖,這時(shí)A bh2; B、bh2;3 6,c、2bh2; d、bh3o3 6圖所示,其上、下邊到中性軸的距離 y iwy2,抗彎截面系數(shù)有,故截面最大拉應(yīng)力該組合梁的抗彎截面系數(shù)W應(yīng)為與最大壓力不相等.A WW;B 、W(512,0y1 0y2;C(moy2; D 、(511(T12,oy1oy2.36、圓形截面的階梯形懸臂梁如下圖的許用應(yīng)力為同,BC段的橫截面直徑大小為d1=0.7d2 ,假設(shè)在C端施加的力P就是由A端截面按強(qiáng)

27、度條件確定的最大許可載荷,那么可知.A梁是平安的;日因條件不全而無(wú)法判斷梁是否平安;C梁是不平安的;P 1111 BC1 ALaa0 7-10D彎曲正應(yīng)力強(qiáng)度條件不適用于這種變截面梁.37、T字形截面梁如下圖的許用應(yīng)力印大于許用拉應(yīng)力可,而且司=2 01,假設(shè)梁內(nèi)的最大壓應(yīng)力oymax=0.5間,那么有.A .0Tmax (yl *B 、CJtmax = 0l *C 、(ylmax 0l o38、將一槽形形截面外伸梁如下圖的截面槽口向上改為截面槽口向下,假設(shè)分析A端橫截面上的應(yīng)力的變化,那么可知.A、最大拉、壓應(yīng)力都增大;BC最大拉應(yīng)力減小,而最大壓應(yīng)力增大;_- I 2PaBAL 2a 39

28、、假設(shè)將圓形截面梁的直徑增大為原來(lái)的、最大拉、壓應(yīng)力都減??;D 、最大拉應(yīng)力增大,而最大壓應(yīng)力減小.2倍,那么允許的梁內(nèi)的最大彎矩值將增大為原來(lái)的() 倍.A 2; B 、 4; C 、 6; D 、 8.40、一木梁發(fā)生彎曲破壞時(shí),發(fā)現(xiàn)產(chǎn)生了縱向裂紋,因梁縱向截面并無(wú)正應(yīng)力,而材料沿縱向的強(qiáng)度較弱,故本梁沿縱向開裂.A、剪切;B 、拉伸; C 、壓縮; D 、擠壓.QSz41、對(duì)于T字形、工字形及圓形的等截面梁 ,在應(yīng)用彎曲剪應(yīng)力公式t = t 計(jì)算剪應(yīng)IzB力時(shí),式中的常量b應(yīng)當(dāng)是 寬度.A、所求應(yīng)力點(diǎn)處的截面;B、截面的最大;C截面的最?。籇 、截面的平均.42、為了充分發(fā)揮梁的抗彎作用

29、,在選用梁的合理截面時(shí),應(yīng)盡可能使其截面的材料置于的地方.A、離中性軸較近;B 、離中性軸較遠(yuǎn);C形心周圍; D 、接近外力作用的縱向?qū)ΨQ軸.43、用四根角鋼組成的梁,在受到鉛垂平面內(nèi)的外力彳用而產(chǎn)生純彎曲時(shí),應(yīng)將角鋼組合成如圖所示的形式即可得到最正確的彎曲強(qiáng)度.3b44、龍門吊車的橫梁通常是采取 A、將支座向內(nèi)移;B 、適當(dāng)布置載荷;C合理設(shè)計(jì)截面;D 、用變截面梁.45、假設(shè)將作用在簡(jiǎn)支梁中央的集中力分散為靠近支座的兩個(gè)集中力如下圖,那么此時(shí)梁所能承受的集中力心將增大為梁原來(lái)承受的集中力品的 倍.A 0.5 ; B 、1 ; C 、2; D 、4.Pi四、利用彎矩、剪力和載荷集度之關(guān)系繪圖示各梁的剪力圖和彎矩圖.五、將厚度8 =2mm的彈簧鋼片卷成直徑D=800mm勺圓形.假設(shè)此時(shí)彈簧鋼片內(nèi)的應(yīng)力仍保持在彈性范圍以內(nèi),且材料的彈性模量E=206Gpa求鋼片內(nèi)的最大正應(yīng)力.六、簡(jiǎn)支梁受力如下圖. P=10KN q=10KN/m, L=4m, c=1m, (r=160Mpa.試為梁選擇圓截面、方截面、矩形截面和工字鋼,并比擬它們橫截面面積的大小.七、鑄鐵梁受力如下圖,截面對(duì)中性軸Z的慣性矩12=764X10-8前,材料

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論