培養(yǎng)歸納總結(jié)的好習(xí)慣_第1頁
培養(yǎng)歸納總結(jié)的好習(xí)慣_第2頁
培養(yǎng)歸納總結(jié)的好習(xí)慣_第3頁
培養(yǎng)歸納總結(jié)的好習(xí)慣_第4頁
培養(yǎng)歸納總結(jié)的好習(xí)慣_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、培養(yǎng)歸納總結(jié)的好習(xí)慣,種出枝繁葉茂的“知識樹”淺談數(shù)學(xué)課上歸納總結(jié)能力的培養(yǎng)我常常聽有些學(xué)生抱怨說:老師一講就明白了, 可是再遇到時 就又不知從那下手了”對于這個問題,我認(rèn)為是因?yàn)槭菍W(xué)生平時學(xué) 習(xí)上缺乏一種“歸納總結(jié)”的好習(xí)慣才造成的 有的學(xué)生學(xué)知識很有條理,好像他把東西擺放得井井有條,需 要什么,一找就找到了。有的人學(xué)知識雜亂無章,好像家里的東西 亂堆亂放一樣, 需要什么, 翻箱倒柜找不到, 急的滿頭大汗沒辦法, 只好再到商店里買新的用。學(xué)習(xí)也是如此,要學(xué)會自己整理,把知 識很有條理地“放入”腦海里,什么時候應(yīng)用,提取出來就會很方便。很多學(xué)生只知道用功地苦學(xué), 而沒有養(yǎng)成及時歸納總結(jié)的習(xí)慣,

2、 所學(xué)的數(shù)學(xué)知識在他那里是分散的、孤立的,沒有連成片,沒有長 成知識樹, 當(dāng)然在應(yīng)用時就不知道從哪里提取, 學(xué)習(xí)效果大打折扣。 人的大腦就像一間倉庫,只有按一定規(guī)律進(jìn)行存儲,在使用時才能 快捷地找到并提取。歸納總結(jié)相似題目的類型,不僅僅是老師的事,我們的學(xué)生也 要學(xué)會自己做。當(dāng)學(xué)生會對所做的題目分類,知道自己能夠解決哪 些題型,掌握了哪些常見的解題方法,還有哪些類型題不會做時, 學(xué)生才真正的掌握了這門學(xué)科的竅門,才能真正的做到“任它千變 萬化,我自巋然不動”。學(xué)生們經(jīng)常會發(fā)現(xiàn),天天做題,可成績不升反降。很多相似的 題目反復(fù)做,可是不會的題目還是不會,會做的題目也因?yàn)槿狈?數(shù)學(xué)的整體把握,弄的

3、一團(tuán)糟。這就是因?yàn)樗麄儧]有養(yǎng)成歸納總結(jié) 的習(xí)慣,學(xué)過的章節(jié) ,不知重難點(diǎn) ;檢測多遍的知識 ,仍然稀里糊涂 ;同 一類型的問題做過多次,還是束手無策這些現(xiàn)象在數(shù)學(xué)學(xué)習(xí)中 很普遍 ,這是學(xué)生數(shù)學(xué)歸納能力欠缺的表現(xiàn)。在多年的教學(xué)生涯中,我深深體會到了培養(yǎng)學(xué)生歸納總結(jié)習(xí)慣 的重要性。它甚至比單純地教給學(xué)生知識與能力更重要。在教學(xué)中教師必須注意提高學(xué)生的數(shù)學(xué)歸納能力。這樣即強(qiáng)調(diào) 了學(xué)生的自主學(xué)習(xí),又讓學(xué)生在學(xué)習(xí)活動中學(xué)會自己歸納,總結(jié)規(guī) 律,既符合了新課標(biāo)的基本理念,又讓學(xué)生學(xué)到了知識,教師只起 到組織和引導(dǎo)的作用。那么在日常的教學(xué)中應(yīng)該怎樣培養(yǎng)學(xué)生的歸納總結(jié)能力呢我認(rèn) 為應(yīng)從以下幾個方面入手:一、要

4、培養(yǎng)學(xué)生歸納重難點(diǎn)的習(xí)慣。數(shù)學(xué)的每一節(jié),每一章都有重點(diǎn)難點(diǎn).調(diào)動學(xué)生歸納出來,并下功 夫掌握住,就等于抓住了學(xué)習(xí)的要害,對整個學(xué)習(xí)會產(chǎn)生事半功倍的 效果。例如:在學(xué)習(xí)圓與圓的位置關(guān)系一節(jié)中,引導(dǎo)學(xué)生歸納出本節(jié) 的難點(diǎn)就是:確定圓心距與半徑的和、半徑的差的大小關(guān)系。這樣 在遇到形形色色的圓與圓的位置關(guān)系題時,學(xué)生才能快速的找到解 決問題的途徑。二、要求學(xué)生歸納知識點(diǎn),構(gòu)建知識網(wǎng)。知識點(diǎn)的學(xué)習(xí)是零碎分散的,缺少歸納整理,就如同廢品收購站 一樣,亂七八糟,混亂不堪;有了歸納整理,才可以理清關(guān)系,鞏固所學(xué), 形成合力,構(gòu)建起強(qiáng)大的知識網(wǎng)。例如:二次函數(shù)復(fù)習(xí)要點(diǎn)1. 二次函數(shù)的一般形式:y=ax2+bx

5、+c(a、b、c是常數(shù),且 az 0)2. 判斷一個函數(shù)是否是二次函數(shù):最高次數(shù)是2az 0解 析式是整式=ax2的性質(zhì):有關(guān),a I越大,開口越小,4.拋物線的開口大小與 越小,開口越大。5. 頂點(diǎn)式:y=a(x-h)2+h的特點(diǎn):開口方向頂點(diǎn)坐標(biāo)對稱 軸(如何配方)一般式:y=ax2+bx+c的特點(diǎn):(如何推導(dǎo))6. 二次函數(shù)y=ax2+bx+c的性質(zhì):、b、c、等符號的判斷:a的符號看開口,上正下負(fù); b的符號看頂點(diǎn)(和y軸),左同右異中間0;c的符號看交點(diǎn)(與 y軸),上正下負(fù)原點(diǎn)0;的符號看與x軸的交點(diǎn),與x軸有兩 個交點(diǎn),> 0;與x軸有一個交點(diǎn),=0;與x軸沒有交點(diǎn),<

6、; 08. 二次函數(shù)解析式的求法:9. 二次函數(shù)最值的求法:10. 二次函數(shù)的實(shí)際應(yīng)用:學(xué)生只有系統(tǒng)的歸納出二次函數(shù)的知識要點(diǎn)了,才能對二次函 數(shù)了如指掌,才能將二次函數(shù)的知識靈活的應(yīng)用。三、要引導(dǎo)學(xué)生歸納問題類型 ,總結(jié)解題規(guī)律。數(shù)學(xué)題是無限的,而常見的問題類型是有數(shù)的。 數(shù)學(xué)學(xué)習(xí)就要?dú)w 納出常見的問題類型,通曉各自特點(diǎn),掌握彼此的解題規(guī)律。這樣認(rèn)真 做了,就可以脫離題海,真正實(shí)現(xiàn)舉一反三,觸類旁通的學(xué)習(xí)自由。比如在證明一些線段成比例的題型中,若圖形中未出現(xiàn)相似三 角形中的基本題型:A字型與X型,通常需要通過找一些分點(diǎn)添平 行線去構(gòu)造這些基本題型。而且找分點(diǎn)還是有規(guī)律可循。通??砂?條件中出

7、現(xiàn)的已知比例或分點(diǎn)的線段和結(jié)論中所要證明的線段所在 的直線稱為熱線,把幾條熱線的交點(diǎn)稱為 熱點(diǎn)。那么過分點(diǎn)添平行 線即可實(shí)際操作為過 熱點(diǎn)添熱線的平行線。例如:點(diǎn)D是三角形ABC 邊AC上的中點(diǎn),過 D的直線交AB于點(diǎn)E,交BC的延長線于點(diǎn) F, 求證:AE圧。EB BF分析:條件中出現(xiàn)已知中點(diǎn)的線段是 AC、結(jié)論中有關(guān)的線段落在AB和BF上,所以本題中的熱線為 AC、AB和BF,這三條線段的 交點(diǎn)分別為A點(diǎn)、B點(diǎn)和C點(diǎn),此三點(diǎn)即為三個熱點(diǎn)。所以本題的 證明方法主要有三種。解法一:解法二:解法三:一題本來比較復(fù)雜的幾何題型,通過熱線熱點(diǎn)這些較為通俗易 懂的字眼,使題目簡單化,如果教師積極引導(dǎo)學(xué)

8、生歸納知識點(diǎn)之間 的內(nèi)在聯(lián)系,總結(jié)解題規(guī)律,既能提高學(xué)生學(xué)習(xí)幾何的興趣,又能 提高學(xué)生歸納及解題能力。再如初二幾何中梯形面積公式的教學(xué),教材中給出作對角線、把梯形分成兩個三角形的解法,教學(xué)中不應(yīng)該停留在這種表層的認(rèn) 識上,應(yīng)引導(dǎo)學(xué)生這種方法的深層次含義,既通過“分解與組合” 思想,實(shí)現(xiàn)把未知問題轉(zhuǎn)化為已知問題,并進(jìn)而引導(dǎo)學(xué)生運(yùn)用這種 思想方法去探求問題的其他解法,培養(yǎng)學(xué)生思維的靈活性。在梯形 中常見的有以下六種題型:(1) 已知兩底之差或求兩底之差的題型,常過上底的一個端點(diǎn) 添一腰的平行線與下底相交;達(dá)到把梯形分解成一個平行四邊形與三角形的目的;求(圖 1);(2)已知梯形的上底和底, 求面積

9、,常過上底的兩個端點(diǎn)向下 底作垂線,添高;(圖2);(3) 延長兩腰交于一點(diǎn),可得到一對相似三角形(圖3);(4) 已知梯形對角線相等或互相垂直的題型,常過上底的一個 端點(diǎn)作一對角線的平行線,與下底的延長線相交,體現(xiàn)組合的思想(圖 4);(5) 有中點(diǎn)時,常過一腰的中點(diǎn)作另一腰的平行線,分別與上 底的延長線、下底相交(圖 5);(6)有中點(diǎn)時,也常連接上底的一端點(diǎn)與另一腰的中點(diǎn)并延長, 與下底的延長線相交(圖 6)。(2)(5)(4)(3)我每位教師在關(guān)注數(shù)學(xué)學(xué)習(xí)的時候,應(yīng)多加關(guān)注學(xué)生的數(shù)學(xué)歸納能力,讓學(xué)生 在數(shù)學(xué)學(xué)習(xí)的道路上走得更快 ,更好,更輕松。在我們歷年的教育改革大潮中“減負(fù)”是個不老的話題,可是 真正做到減負(fù)卻不是件容易的事,但是,我敢說,培養(yǎng)學(xué)生“總結(jié)歸納”的習(xí)慣是將題目越做越少的最好辦法。學(xué)生們以自己的知識經(jīng)驗(yàn)進(jìn)行總結(jié)歸納,把孤立靜止的數(shù)學(xué)知 識聯(lián)系起來、活躍起來。經(jīng)過整理,豐富龐雜的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論