北京高考文科數(shù)學(xué)試題及答案完美版_第1頁(yè)
北京高考文科數(shù)學(xué)試題及答案完美版_第2頁(yè)
北京高考文科數(shù)學(xué)試題及答案完美版_第3頁(yè)
北京高考文科數(shù)學(xué)試題及答案完美版_第4頁(yè)
北京高考文科數(shù)學(xué)試題及答案完美版_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2 0 14 年普通高等學(xué)校招生全國(guó)統(tǒng)數(shù)學(xué)(文)(北京卷)第一部分(選擇題共40分)、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符合題目要求的一項(xiàng)。(1)若集合A 0,1,2,4 ,B 1,2,3 ,貝U AI B()(A)0,1,2,3,4(B)0,4(C)1,2 (D)卜列函數(shù)中,定義域是R且為增函數(shù)的是()(A)y e x (B)y x (C) y In x (D) y已知向量a 2,4 , b 1,1,則2a b ()(A)5,7(B)5,9 (C)3,7(D)3,9S值為()執(zhí)行如圖所示的程序框圖,輸出的(4)(A) 0,1O345t(8)加工爆米花時(shí),爆開

2、且不糊的粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時(shí)間t (單位:分鐘)滿足的函數(shù)關(guān)系p at2 bt c (a、b、 c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以 得到最佳加工時(shí)間為()(A) 3.50分鐘(B) 3.75分鐘(C) 4.00分鐘(D) 4.25分鐘第二部分(非選擇題共110分)二、填空題共6小題,每小題5分,共30分。(9)若 x i i 1 2i x R ,則 x .(10)設(shè)雙曲線c的兩個(gè)焦點(diǎn)為72,0 , 亞0,一個(gè)頂點(diǎn)式1,0 ,則c的方程為.(11)某三棱錐的三視圖如圖所示,則該三棱錐的最長(zhǎng)棱的 棱長(zhǎng)為.(12)在 AB

3、C 中,a 1, b 2, cosC 則c ; sin A .4y 1(13)若x、y滿足x y 1 0,則z狗x y的最小值為. x y 1 0(14)顧客請(qǐng)一位工藝師把A、B兩件玉石原料各制成一件工藝品,工藝師帶一位徒 弟完成這項(xiàng)任務(wù),每件顏料先由徒弟完成粗加工,再由工藝師進(jìn)行精加工完 成制作,兩件工藝品都完成后交付顧客,兩件原料每道工序所需時(shí)間(單位:工作日)如下:J序時(shí)而一.一粗加工精加工原料原料A原料B則最短交貨期為工作日、解答題共6小題,共80分。解答應(yīng)寫出必要的文字說明,演算步驟(15)(本小題13分)已知an是等差數(shù)列,滿足ai3,a412,數(shù)列bn滿足b 4,b420 ,且b

4、n an 為等比數(shù)列.(I)求數(shù)列an和bn的通項(xiàng)公式;(n )求數(shù)列bn的前n項(xiàng)和.(16)(本小題13分)函數(shù)f x 3sin 2x 的部分圖象如圖所示6(I)寫出f x的最小正周期及圖中凡、y0的值;(H)求f x在區(qū)間 一,一上的最大值和最小值 212(17)(本小題14分)如圖,在三棱柱ABC A1B1C1中,側(cè)棱垂直于底面,AB BC , AA AC 2 ,E、F分別為AG、BC的中點(diǎn).(I )求證:平面 ABE 平面B1BCC1 ;(H)求證:GF 平面ABE;(m)求三棱錐E ABC的體積.(18)(本小題14分)(單位:小時(shí))的數(shù)從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外

5、閱讀時(shí)間 據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:組號(hào)分組頻數(shù)1628317422525612768292合計(jì)100(I)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;(H)求頻率分布直方圖中的a, b的值;(m)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值 代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的 平均數(shù)在第幾組(只需寫出結(jié)論)(19)(本小題14分)已知橢圓C: x2 2y2 4.(I )求橢圓C的離心率;(H)設(shè)。為原點(diǎn),若點(diǎn)A在直線y2,點(diǎn)B在橢圓C上,且OA OB ,求線段AB長(zhǎng)度的最小值.(20)(本小題13分)已知函數(shù)f(x) 2x3

6、 3x.(I)求f(x)在區(qū)間2,1上的最大值;(II)若過點(diǎn)P(1,t)存在3條直線與曲線y f(x)相切,求t的取值范圍;(m)問過點(diǎn)A( 1,2), B(2,10), C(0,2)分別存在幾條直線與曲線y f(x)相切?(只需 寫出結(jié)論)2014年普通高等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)(文)(北京卷)答案及解析第一部分(選擇題共40分)、選擇題共8小題,每小題5分,共40分。在每小題列出的四個(gè)選項(xiàng)中,選出符 合題目要求的一項(xiàng)。(1)若集合 A 0,1,2,4 , B 1,2,3,則 AI B ()(A) 0,1,2,3,4(B) 0,4 (C) 1,2 (D) 3【答案】C【解析】因?yàn)锳 B

7、1,2,所以選C.【考點(diǎn)】本小題主要考查集合的基本運(yùn)算,屬容易題,熟練集合的基礎(chǔ)知識(shí)是解答集 合題目的關(guān)鍵.(2)下列函數(shù)中,定義域是 R且為增函數(shù)的是()(A) y ex (B) y x (C) y In x (D) y x【答案】B【解析】對(duì)于選項(xiàng)A,在R上是減函數(shù);選項(xiàng)C的定義域?yàn)?0,);選項(xiàng)D,在(,0) 上是減函數(shù),故選B.【考點(diǎn)】本小題主要考查函數(shù)的單調(diào)性,屬基礎(chǔ)題,難度不大., rrr r(3)已知向量 a 2,4 , b1,1,則 2a b()(A) 5,7 (B) 5,9 (C) 3,7 (D) 3,9【答案】A【解析】因?yàn)?a (4,8),所以2a b (4,8) (1,

8、1) (5,7),故選A.【考點(diǎn)】本小題主要考查平面向量的基本運(yùn)算,屬容易題開始/(4)執(zhí)行如圖所示的程序框圖,輸出的 S值為()k=0 3=0(A) 1 (B) 3(C) 7 (D)15【答案】C【解析】當(dāng)k=0時(shí),S 1;當(dāng)k=1時(shí),S 1 2 3;當(dāng)k=2時(shí),S 3 4 7;當(dāng)k=3時(shí),輸出S 7 ,故選C.【考點(diǎn)】本小題主要考查程序框圖的基礎(chǔ)知識(shí),難度不大,程序 框圖是高考新增內(nèi)容,是高考的重點(diǎn)知識(shí),熟練本部分的基礎(chǔ)知 識(shí)是解答的關(guān)鍵.(5)設(shè)a、b是實(shí)數(shù),則“ a b”是“ a2 b2”的()(A)充分而不必要條件(B)必要而不必要條件(C)充分必要條件(D)既不充分不必要條件【答案

9、】D【解析】若a 0,b2 ,則a2 b2 ,故不充分;若a 2,b 0,則a2 b2,而a b,故不必要,故選D.【考點(diǎn)】本小題主要考查不等式的性質(zhì),熟練不等式的性質(zhì)是解答好本類題目的關(guān) 鍵.(6)已知函數(shù)f x log2 x ,在下列區(qū)間中,包含f x零點(diǎn)的區(qū)間是() x(A) 0,1 (B) 1,2 (C) 2,4 (D) 4,【答案】C3【解析】因?yàn)閒(2) 4 1 0, f(4) -2 0,所以由根的存在性定理可知,選 C.2【考點(diǎn)】本小題主要考查函數(shù)的零點(diǎn)知識(shí),正確理解零點(diǎn)定義及根的存在性定理是解答好本類題目的關(guān)鍵.22已知圓C: x - y 41和兩點(diǎn)A m,0 , B m,0

10、m 0 ,若圓C上存在點(diǎn)P ,使得 APB 90。,則m的最大值為()(A) 7 (B) 6 (C) 5 (D) 4【答案】B【解析】由題意知,點(diǎn)P在以原點(diǎn)(0,0)為圓心,以m為半徑的圓上,又因?yàn)辄c(diǎn)P在已知圓上,所以只要兩個(gè)圓有交點(diǎn)即可,所以 m 1 5,故選B.【考點(diǎn)】本小題主要考查兩圓的位置關(guān)系,考查數(shù)形結(jié)合思想,考查分析問題與解決問題的能力.(8)加工爆米花時(shí),爆開且不糊的粒數(shù)的百分比稱為“可食用率”.咋特定條件下,可食用率p與加工時(shí)間t (單位:分鐘)滿足的函數(shù)關(guān)系p at2 bt c (a、b、c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù).根據(jù)上述函數(shù)模型和實(shí)驗(yàn)數(shù)據(jù),可以 得到最佳加工時(shí)間

11、為()(A) 3.50分鐘(B) 3.75分鐘(C) 4.00分鐘(D) 4.25分鐘【答案】B0.810.71;ii0.511 |!1>-O345 t【解析】由圖形可知,三點(diǎn)(3,0.7),(4,0.8),(5,0.5)都在函數(shù)p at2bt c的圖象上,9a 3b c 0.7所以 16a 4b c 0.8,解得 a 02 b 1.5,c2.25a 5b c 0.515 c 1315所以p0.2t 1.5t 20.2(t ) 一,當(dāng)t 一 二3.75時(shí),p取最大值,故選4164B.【考點(diǎn)】本小題以實(shí)際應(yīng)用為背景,主要考查二次函數(shù)的解析式的求解、二次函數(shù)的最值等基礎(chǔ)知識(shí),考查同學(xué)們分析問

12、題與解決問題的能力.第二部分(非選擇題共110分)二、填空題共6小題,每小題5分,共30分。(9)若 x i i 1 2i x R ,則 x .【答案】2【解析】由題意知:xi 11 2i ,所以由復(fù)數(shù)相等的定義知x 2【考點(diǎn)】本小題主要考查復(fù)數(shù)相等的定義、復(fù)數(shù)的運(yùn)算,難度不大,復(fù)數(shù)是高考的重點(diǎn),年年必考,熟練復(fù)數(shù)的基礎(chǔ)知識(shí)是解答好本類題目的關(guān)鍵.(10)設(shè)雙曲線C的兩個(gè)焦點(diǎn)為 近,0 , J2,0,一個(gè)頂點(diǎn)式1,0,則C的方程為.【答案】x2 y2 1【解析】由題意知:c V2,a 1,所以b2 c2 a2 1,又因?yàn)殡p曲線的焦點(diǎn)在x軸上,所以C的方程為x2 y2 1.【考點(diǎn)】本小題駐澳考查

13、雙曲線方程的求解、a,b,c的關(guān)系式,考查分析問題與解決問題的能力.(11)某三棱錐的三視圖如圖所示,則該三棱錐的最長(zhǎng)棱的棱長(zhǎng)為.【答案】2 .2【解析】由三視圖可知:該幾何體為一條側(cè)棱垂直底面的 三棱錐,底面為邊長(zhǎng)為2的等邊三角形,棱錐的高為2,22222 2.【考點(diǎn)】本小題主要考查立體幾何的三視圖,考查同學(xué)們的空間想象能力,考查分析問題與解決問題的能力.(12)在 ABC 中,a【解析】由余弦定理得:cosA7,所以 sin Aq5.8812 , cosC ,則 c ; sin A41001c2 a2 b2 2abcosC 5 2 2 - 4,故 c 2;因?yàn)?4【考點(diǎn)】本小題主要考查解三

14、角形的知識(shí),考查正弦定理,三角函數(shù)的基本關(guān)系式等 基礎(chǔ)止水,屬中低檔題目.y 1(13)若x、y滿足x y 1 0,則z加x y的最小值為.x y 1 0【答案】1【解析】畫出不等式組表示的平面區(qū)域,可知區(qū)域?yàn)槿切?,平移直線z T3x y可得,當(dāng)直線經(jīng)過兩條直線y 1與x y 1 0的交點(diǎn)(0,1)時(shí),z取得最小值1.【考點(diǎn)】本小題主要考查在約束條件下的簡(jiǎn)單的目標(biāo)函數(shù)的最值問題,正確畫圖與平 移直線是解答這類問題的關(guān)鍵.(14)顧客請(qǐng)一位工藝師把A、B兩件玉石原料各制成一件工藝品,工藝師帶一位徒弟完成這項(xiàng)任務(wù),每件顏料先由徒弟完成粗加工,再由工藝師進(jìn)行精加工完 成制作,兩件工藝品都完成后交付

15、顧客,兩件原料每道工序所需時(shí)間(單位:工作日)如下:.工序 粗加工精加工原料原料A原料B則最短交貨期為工作日【答案】42【解析】因?yàn)榈谝患M(jìn)行粗加工時(shí),工藝師什么都不能做,所以最短交貨期為6 15 21 42 天.【考點(diǎn)】本小題以實(shí)際問題為背景,主要考查邏輯思維能力,考查分析問題與解決問 題的能力.三、解答題共6小題,共80分。解答應(yīng)寫出必要的文字說明,演算步驟。(15)(本小題13分)已知an是等差數(shù)列,滿足a1 3, a4 12,數(shù)列bn滿足b 4, b420 ,且bn an 為等比數(shù)列.(I)求數(shù)列an和bn的通項(xiàng)公式;(n )求數(shù)列bn的前n項(xiàng)和.(15)(共 13 分)解:(I )設(shè)

16、等差數(shù)列an的公差為d ,由題意得d *一1 口 333所以 an a1n 1 d 3n n 1 , 2, L .設(shè)等比數(shù)列bn an的公比為q ,由題意得q3 b-a4 202 8 ,解得q 2 .bi a14 3所以 bn anb1 a1 qn 1 2n 1 .從而 bn 3n 2n1 n 1, 2, L(H)由知 bn 3n 2n 1 n 1, 2, L .數(shù)列3n的前n項(xiàng)和為3n n 1 ,數(shù)列2n 1的前n項(xiàng)和為1XL2 2n 1 .21 2所以,數(shù)列bn的前n項(xiàng)和為3nn 12nl.2(16)(本小題13分)函數(shù)f x 3sin 2x 一的部分圖象如圖所示6(I)寫出f x的最小正

17、周期及圖中x。、y。的值;(H)求f x在區(qū)間-,一上的最大值和最小值212(16)(共 13 分)解:(I ) f x的最小正周期為冗Xo(H)因?yàn)閤”所以2X5兀 -石0于是當(dāng)2x/0,即x 時(shí),f x取得最大值0; 612當(dāng)2x / ,即x 時(shí),f x取得最小值3. 623(17)(本小題14分)如圖,在三棱柱ABC AB1cl中,側(cè)棱垂直于底面,AB BC , AA1 AC 2 ,E、F分別為AG、BC的中點(diǎn).(I )求證:平面 ABE 平面B1BCC1 ;(H)求證:GF平面ABE;(m)求三棱錐E ABC的體積.(17)(共 14 分)解:(I )在三棱柱 ABC A BQ 中,B

18、B1 底面 ABC .所以BB1 AB .又因?yàn)锳B BC .所以AB 平面BBCG .所以平面 ABE 平面B1BCC1 .B(n)取AB中點(diǎn)G ,連結(jié)EG , FG .因?yàn)镋 , F分別是AG , BC的中點(diǎn),1所以 FG / AC ,且 FG -AC .2因?yàn)?AC / AC1 ,且 AC AC1 ,組號(hào)分組頻數(shù)i6283i74225256i2768292合計(jì)i00所以 FG / ECi ,且 FG ECi .所以四邊形FGECi為平行四邊形.所以 CiF / EG .又因?yàn)镋G 平面ABE , CiF 平面ABE ,所以CiF /平面ABE .(田)因?yàn)?AAi AC 2 , BC i

19、 , AB BC ,所以 AB AC BC >/3 .所以三棱錐E ABC的體積31ABe AAi ; 2 312 V(i8)(本小題i4分)從某校隨機(jī)抽取i00名學(xué)生,獲得了他們一周課外閱讀時(shí)間 (單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:(I)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于i2小時(shí)的概率;(H)求頻率分布直方圖中的a, b的值;(m)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值 代替,試估計(jì)樣本中的i00名學(xué)生該周課外閱讀時(shí)間的 平均數(shù)在第幾組(只需寫出結(jié)論)(i8)(共 i3分)解:(I)根據(jù)頻數(shù)分布表,i00名學(xué)生中課外閱讀時(shí)間

20、不少于i2小時(shí)的學(xué)生共有6 2 2 i0名,所以樣本中的學(xué)生課外閱讀時(shí)間少于i2小時(shí)的頻率是i0i00從該校隨機(jī)選取一名學(xué)生,估計(jì)其課外閱讀時(shí)間少于i2小時(shí)的概率為0.9.(H)課外閱讀時(shí)間落在組4, 6)的有i7人,頻率為0.i7,所以頻率而0.i720.085.課外閱讀時(shí)間落在組8 , i0)的有25人,頻率為0.25 ,頻率s>0.250.125.(m)樣本中的100名學(xué)生課外閱讀時(shí)間的平均數(shù)在第 4組.(19)(本小題14分)已知橢圓C: x2 2y2 4.(I )求橢圓C的離心率;(H)設(shè)。為原點(diǎn),若點(diǎn)A在直線y 2 ,點(diǎn)B在橢圓C上,且OA OB ,求線段AB長(zhǎng)度的最小值.(

21、19)(共 14 分)22解:(I)由題意,橢圓C的標(biāo)準(zhǔn)方程為上L 1.42所以 a2 4 , b2 2 ,從而 c2 a2 b2 2.因此a 2 , c 72 .故橢圓C的離心率e c史. a 2(n )設(shè)點(diǎn)A , B的坐標(biāo)分別為t , 2 , X0 , y0 ,其中X0 w 0 .因?yàn)镺A OB, uun uur 所以O(shè)A OB 0 ,即 tx0 2y0 0 ,解得 t2y0 .X0又X2 2y2 4 ,所以也烏 4 0 x(2 < 4 . 2 X02a-c. .c因?yàn)榘B"0 X2W4 ,且當(dāng)x2 4時(shí)等號(hào)成立,所以AB、8. 2 X0故線段AB長(zhǎng)度的最小值為2夜.(20)(本小題13分)已知函數(shù)f (x) 2x3 3x.(I)求f(x)在區(qū)間2,1上的最大值;(II)若過點(diǎn)P(1,t)存在3條直線與曲線y f(x)相切,求t的取值范圍;(m)問過點(diǎn)A( 1,2), B(2,10), C(0,2)分別存在幾條直線與曲線y f(x)相切?(只需寫出結(jié)論)(20)(共 13 分)解:(I )由 f x 2x3 3x得 f x 6x2 3.令fx 0,得x 配或x且.22因?yàn)?f 210

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論