第十七章反比例函數教案_第1頁
第十七章反比例函數教案_第2頁
第十七章反比例函數教案_第3頁
第十七章反比例函數教案_第4頁
第十七章反比例函數教案_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第十七章 反比例函數第1課時反比例函數的意義一、教學目標:1、使學生理解并掌握反比例函數的概念2、能判斷一個給定的函數是否為反比例函數,并會用待定系數法求函數解析式3、能根據實際問題中的條件確定反比例函數的解析式,體會函數的模型思想二、重、難點:1、重點:理解反比例函數的概念,能根據已知條件寫出函數解析式2、難點:理解反比例函數的概念3、難點的突破方法:(1)、在引入反比例函數的概念時,可適當復習一下第11章的正比例函數、一次函數等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數概念的理解(2)、注意引導學生對反比例函數概念的理解,看形式,等號左邊是函數y,等號右邊是一個分式,自變量x在分

2、母上,且x的指數是1,分子是不為0的常數k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實數;看函數y的取值范圍,因為k0,且x0,所以函數值y也不可能為0。講解時可對照正比例函數ykx(k0),比較二者解析式的相同點和不同點。(3)、(k0)還可以寫成(k0)或xyk(k0)的形式三、例題的意圖分析:教材第46頁的思考題是為引入反比例函數的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數的概念,體會函數的模型思想。教材第47頁的例1是一道用待定系數法求反比例函數解析式的題,此題的目的一是要加深學生對反比例函數概念的理解,

3、掌握求函數解析式的方法;二是讓學生進一步體會函數所蘊含的“變化與對應”的思想,特別是函數與自變量之間的單值對應關系。補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數的概念。補充例3是一道綜合題,此題是用待定系數法確定由兩個函數組合而成的新的函數關系式,有一定難度,但能提高學生分析、解決問題的能力。四、課堂引入:1回憶一下什么是正比例函數、一次函數?它們的一般形式是怎樣的?2體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?五、例習題分析:例1見教材P47分析:因為y是x的反比例函數,所以先設,再把x2和y6代入上式求出常數k,即利用了待定系數法確定函數解析式。例1(

4、補充)下列等式中,哪些是反比例函數(1) (2) (3)xy21 (4) (5)(6) (7)yx4分析:根據反比例函數的定義,關鍵看上面各式能否改寫成(k為常數,k0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數,只有(2)、(3)、(5)能寫成定義的形式例2(補充)當m取什么值時,函數是反比例函數?分析:反比例函數(k0)的另一種表達式是(k0),后一種寫法中x的次數是1,因此m的取值必須滿足兩個條件,即m20且3m21,特別注意不要遺漏k0這一條件,也要防止出現3m21的錯誤。解得m2例3(補充)已知函數yy1y2,y1與x成正比例,y2與x

5、成反比例,且當x1時,y4;當x2時,y5(1) 求y與x的函數關系式(2) 當x2時,求函數y的值分析:此題函數y是由y1和y2兩個函數組成的,要用待定系數法來解答,先根據題意分別設出y1、 y2與x的函數關系式,再代入數值,通過解方程或方程組求出比例系數的值。這里要注意y1與x和y2與x的函數關系中的比例系數不一定相同,故不能都設為k,要用不同的字母表示。略解:設y1k1x(k10),(k20),則,代入數值求得k12,k22,則,當x2時,y5六、隨堂練習:1蘋果每千克x元,花10元錢可買y千克的蘋果,則y與x之間的函數關系式為 2若函數是反比例函數,則m的取值是 3矩形的面積為4,一條

6、邊的長為x,另一條邊的長為y,則y與x的函數解析式為 4已知y與x成反比例,且當x2時,y3,則y與x之間的函數關系式是 ,當x3時,y 5函數中自變量x的取值范圍是 七、課后練習:已知函數yy1y2,y1與x1成正比例,y2與x成反比例,且當x1時,y0;當x4時,y9,求當x1時y的值答案:y4第2課時反比例函數的圖象和性質(1)一、教學目標:1、會用描點法畫反比例函數的圖象2、結合圖象分析并掌握反比例函數的性質3、體會函數的三種表示方法,領會數形結合的思想方法二、重點、難點:1、重點:理解并掌握反比例函數的圖象和性質2、難點:正確畫出圖象,通過觀察、分析,歸納出反比例函數的性質3、難點的

7、突破方法:畫反比例函數圖象前,應先讓學生回憶一下畫函數圖象的基本步驟,即:列表、描點、連線,其中列表取值很關鍵。反比例函數(k0)自變量的取值范圍是x0,所以取值時應對稱式地選取正數和負數各一半,并且互為相反數,通常取的數值越多,畫出的圖象越精確。連線時要告訴學生用平滑的曲線連接,不能用折線連接。教學時,老師要帶著學生一起畫,注意引導,及時糾錯。在探究反比例函數的性質時,可結合正比例函數ykx(k0)的圖象和性質,來幫助學生觀察、分析及歸納,通過對比,能使學生更好地理解和掌握所學的內容。這里要強調一下,反比例函數的圖象位置和增減性是由反比例系數k的符號決定的;反之,雙曲線的位置和函數性質也能推

8、出k的符號,注意讓學生體會數形結合的思想方法。三、例題的意圖分析:教材第48頁的例2是讓學生經歷用描點法畫反比例函數圖象的過程,一方面能進一步熟悉作函數圖象的方法,提高基本技能;另一方面可以加深學生對反比例函數圖象的認識,了解函數的變化規(guī)律,從而為探究函數的性質作準備。補充例1的目的一是復習鞏固反比例函數的定義,二是通過對反比例函數性質的簡單應用,使學生進一步理解反比例函數的圖象特征及性質。補充例2是一道典型題,是關于反比例函數圖象與矩形面積的問題,要讓學生理解并掌握反比例函數解析式(k0)中的幾何意義。四、課堂引入:提出問題:1一次函數ykxb(k、b是常數,k0)的圖象是什么?其性質有哪些

9、?正比例函數ykx(k0)呢?2畫函數圖象的方法是什么?其一般步驟有哪些?應注意什么?3反比例函數的圖象是什么樣呢?五、例習題分析:例2見教材P48,用描點法畫圖,注意強調:(1)列表取值時,x0,因為x0函數無意義,為了使描出的點具有代表性,可以“0”為中心,向兩邊對稱式取值,即正、負數各一半,且互為相反數,這樣也便于求y值(2)由于函數圖象的特征還不清楚,所以要盡量多取一些數值,多描一些點,這樣便于連線,使畫出的圖象更精確(3)連線時要用平滑的曲線按照自變量從小到大的順序連接,切忌畫成折線(4)由于x0,k0,所以y0,函數圖象永遠不會與x軸、y軸相交,只是無限靠近兩坐標軸例1(補充)已知

10、反比例函數的圖象在第二、四象限,求m值,并指出在每個象限內y隨x的變化情況?分析:此題要考慮兩個方面,一是反比例函數的定義,即(k0)自變量x的指數是1,二是根據反比例函數的性質:當圖象位于第二、四象限時,k0,則m10,不要忽視這個條件略解:是反比例函數 m231,且m10 又圖象在第二、四象限 m10解得且m1 則例2(補充)如圖,過反比例函數(x0)的圖象上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設AOC和BOD的面積分別是S1、S2,比較它們的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小關系不能確定分析:從反比例函數(k0)的圖象

11、上任一點P(x,y)向x軸、y軸作垂線段,與x軸、y軸所圍成的矩形面積,由此可得S1S2 ,故選B六、隨堂練習:1已知反比例函數,分別根據下列條件求出字母k的取值范圍(1)函數圖象位于第一、三象限(2)在第二象限內,y隨x的增大而增大2函數yaxa與(a0)在同一坐標系中的圖象可能是( ) 3在平面直角坐標系內,過反比例函數(k0)的圖象上的一點分別作x軸、y軸的垂線段,與x軸、y軸所圍成的矩形面積是6,則函數解析式為 七、課后練習:1若函數與的圖象交于第一、三象限,則m的取值范圍是 2反比例函數,當x2時,y ;當x2時;y的取值范圍是 ; 當x2時;y的取值范圍是 3 已知反比例函數,當時

12、,y隨x的增大而增大,求函數關系式答案:3 教學后記:第3課時反比例函數的圖象和性質(2)一、教學目標1、使學生進一步理解和掌握反比例函數及其圖象與性質2、能靈活運用函數圖象和性質解決一些較綜合的問題3、深刻領會函數解析式與函數圖象之間的聯系,體會數形結合及轉化的思想方法二、重點、難點1、重點:理解并掌握反比例函數的圖象和性質,并能利用它們解決一些綜合問題2、難點:學會從圖象上分析、解決問題3、難點的突破方法:在前一節(jié)的基礎上,可適當增加一些較綜合的題目,幫助學生熟練掌握反比例函數的圖象和性質,要讓學生學會如何通過函數圖象分析解析式,或由函數解析式分析圖象的方法,以便更好的理解數形結合的思想,

13、最終能達到從“數”和“形”兩方面去分析問題、解決問題。三、例題的意圖分析教材第51頁的例3一是讓學生理解點在圖象上的含義,掌握如何用待定系數法去求解析式,復習鞏固反比例函數的意義;二是通過函數解析式去分析圖象及性質,由“數”到“形”,體會數形結合思想,加深學生對反比例函數圖象和性質的理解。教材第52頁的例4是已知函數圖象求解析式中的未知系數,并由雙曲線的變化趨勢分析函數值y隨x的變化情況,此過程是由“形”到“數”,目的是為了提高學生從函數圖象中獲取信息的能力,加深對函數圖象及性質的理解。補充例1目的是引導學生在解有關函數問題時,要數形結合,另外,在分析反比例函數的增減性時,一定要注意強調在哪個

14、象限內。補充例2是一道有關一次函數和反比例函數的綜合題,目的是提高學生的識圖能力,并能靈活運用所學知識解決一些較綜合的問題。四、課堂引入復習上節(jié)課所學的內容1什么是反比例函數?2反比例函數的圖象是什么?有什么性質?五、例習題分析例3見教材P51分析:反比例函數的圖象位置及y隨x的變化情況取決于常數k的符號,因此要先求常數k,而題中已知圖象經過點A(2,6),即表明把A點坐標代入解析式成立,所以用待定系數法能求出k,這樣解析式也就確定了。例4見教材P52 例1(補充)若點A(2,a)、B(1,b)、C(3,c)在反比例函數(k0)圖象上,則a、b、c的大小關系怎樣?分析:由k0可知,雙曲線位于第

15、二、四象限,且在每一象限內,y隨x的增大而增大,因為A、B在第二象限,且12,故ba0;又C在第四象限,則c0,所以ba0c說明:由于雙曲線的兩個分支在兩個不同的象限內,因此函數y隨x的增減性就不能連續(xù)的看,一定要強調“在每一象限內”,否則,籠統(tǒng)說k0時y隨x的增大而增大,就會誤認為3最大,則c最大,出現錯誤。此題還可以畫草圖,比較a、b、c的大小,利用圖象直觀易懂,不易出錯,應學會使用。例2 (補充)如圖, 一次函數ykxb的圖象與反比例函數的圖象交于A(2,1)、B(1,n)兩點(1)求反比例函數和一次函數的解析式(2)根據圖象寫出一次函數的值大于反比例函數的值的x的取值范圍分析:因為A點

16、在反比例函數的圖象上,可先求出反比例函數的解析式,又B點在反比例函數的圖象上,代入即可求出n的值,最后再由A、B兩點坐標求出一次函數解析式y(tǒng)x1,第(2)問根據圖象可得x的取值范圍x2或0x1,這是因為比較兩個不同函數的值的大小時,就是看這兩個函數圖象哪個在上方,哪個在下方。六、隨堂練習1若直線ykxb經過第一、二、四象限,則函數的圖象在( )(A)第一、三象限 (B)第二、四象限 (C)第三、四象限 (D)第一、二象限2已知點(1,y1)、(2,y2)、(,y3)在雙曲線上,則下列關系式正確的是( )(A)y1y2y3 (B)y1y3y2 (C)y2y1y3 (D)y3y1y2七、課后練習1

17、已知反比例函數的圖象在每個象限內函數值y隨自變量x的增大而減小,且k的值還滿足2k1,若k為整數,求反比例函數的解析式2已知一次函數的圖像與反比例函數的圖像交于A、B兩點,且點A的橫坐標和點B的縱坐標都是2 , 求(1)一次函數的解析式; (2)AOB的面積答案:1或或2(1)yx2,(2)面積為6教學后記:第4課時實際問題與反比例函數(1)一、教學目標1利用反比例函數的知識分析、解決實際問題2滲透數形結合思想,提高學生用函數觀點解決問題的能力二、重點、難點1重點:利用反比例函數的知識分析、解決實際問題2難點:分析實際問題中的數量關系,正確寫出函數解析式3難點的突破方法:用函數觀點解實際問題,

18、一要搞清題目中的基本數量關系,將實際問題抽象成數學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數,以便寫出正確的函數關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數的意義、圖象和性質,特別是圖象,要做到數形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。三、例題的意圖分析教材第57頁的例1,數量關系比較簡單,學生根據基本公式很容易寫出函數關系式,此題實際上是利用了反比例函數的定義,同時也是要讓學生學會分析問題的方法。教材第58頁的例2是一道利用反比例函數的定義和性質來解決的實際問題,此題的實際背景較例1稍

19、復雜些,目的是為了提高學生將實際問題抽象成數學問題的能力,掌握用函數觀點去分析和解決問題的思路。補充例題一是為了鞏固反比例函數的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數形結合的思想方法,以便更好地解決實際問題四、課堂引入寒假到了,小明正與幾個同伴在結冰的河面上溜冰,突然發(fā)現前面有一處冰出現了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險區(qū)。你能解釋一下小明這樣做的道理嗎?五、例習題分析例1見教材第57頁分析:(1)問首先要弄清此題中各數量間的關系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積 底面積×高,由題意知S是函數,d是自變量,改寫后所得的

20、函數關系式是反比例函數的形式,(2)問實際上是已知函數S的值,求自變量d的取值,(3)問則是與(2)相反例2見教材第58頁分析:此題類似應用題中的“工程問題”,關系式為工作總量工作速度×工作時間,由于題目中貨物總量是不變的,兩個變量分別是速度v和時間t,因此具有反比關系,(2)問涉及了反比例函數的增減性,即當自變量t取最大值時,函數值v取最小值是多少?例1(補充)某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數,其圖像如圖所示(千帕是一種壓強單位)(1)寫出這個函數的解析式;(2)當氣球的體積是0.8立方米時,氣球內的氣壓是多少

21、千帕?(3)當氣球內的氣壓大于144千帕時,氣球將爆炸,為了安全起見,氣球的體積應不小于多少立方米?分析:題中已知變量P與V是反比例函數關系,并且圖象經過點A,利用待定系數法可以求出P與V的解析式,得,(3)問中當P大于144千帕時,氣球會爆炸,即當P不超過144千帕時,是安全范圍。根據反比例函數的圖象和性質,P隨V的增大而減小,可先求出氣壓P144千帕時所對應的氣體體積,再分析出最后結果是不小于立方米六、隨堂練習1京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間的函數關系式為 2完成某項任務可獲得500元報酬,考慮

22、由x人完成這項任務,試寫出人均報酬y(元)與人數x(人)之間的函數關系式 3一定質量的氧氣,它的密度(kg/m3)是它的體積V(m3)的反比例函數,當V10時,1.43,(1)求與V的函數關系式;(2)求當V2時氧氣的密度答案:,當V2時,7.15七、課后練習1小林家離工作單位的距離為3600米,他每天騎自行車上班時的速度為v(米/分),所需時間為t(分)(1)則速度v與時間t之間有怎樣的函數關系?(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?(2)如果小林騎車的速度最快為300米/分,那他至少需要幾分鐘到達單位?答案:,v240,t122學校鍋爐旁建有一個儲煤庫,開學初購進一批煤

23、,現在知道:按每天用煤0.6噸計算,一學期(按150天計算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天(1)則y與x之間有怎樣的函數關系?(2)畫函數圖象(3)若每天節(jié)約0.1噸,則這批煤能維持多少天?教學后記:第5課時實際問題與反比例函數(2)一、教學目標1利用反比例函數的知識分析、解決實際問題2滲透數形結合思想,進一步提高學生用函數觀點解決問題的能力,體會和認識反比例函數這一數學模型二、重點、難點1重點:利用反比例函數的知識分析、解決實際問題2難點:分析實際問題中的數量關系,正確寫出函數解析式,解決實際問題3難點的突破方法:本節(jié)的兩個例題與學生的日常生活聯系緊密,讓學生親身經歷將

24、實際問題抽象成數學模型并進行解釋與應用,不但能鞏固所學的知識,還能提高學生學習數學的興趣。本節(jié)的教學,要引導學生從已有的生活經驗出發(fā),按照上一節(jié)所講的基本思路去分析、解決實際問題,注意體會數形結合及轉化的思想方法,要告訴學生充分利用函數圖象的直觀性,這對分析和解決實際問題很有幫助。三、例題的意圖分析教材第58頁的例3和例4都需要用到物理知識,教材在例題前已給出了相關的基本公式,其中的數量關系具有反比例關系,通過對這兩個問題的分析和解決,不但能復習鞏固反比例函數的有關知識,還能培養(yǎng)學生應用數學的意識補充例題是一道綜合題,有一定難度,需要學生有較強的識圖、分析和歸納等方面的能力,此題既有一次函數的

25、知識,又有反比例函數的知識,能進一步深化學生對一次函數和反比例函數知識的理解和掌握,體會數形結合思想的重要作用,同時提高學生靈活運用函數觀點去分析和解決實際問題的能力四、課堂引入1小明家新買了幾桶墻面漆,準備重新粉刷墻壁,請問如何打開這些未開封的墻面漆桶呢?其原理是什么?2臺燈的亮度、電風扇的轉速都可以調節(jié),你能說出其中的道理嗎?五、例習題分析例3見教材第58頁分析:題中已知阻力與阻力臂不變,即阻力與阻力臂的積為定值,由“杠桿定律”知變量動力與動力臂成反比關系,寫出函數關系式,得到函數動力F是自變量動力臂的反比例函數,當1.5時,代入解析式中求F的值;(2)問要利用反比例函數的性質,越大F越小

26、,先求出當F200時,其相應的值的大小,從而得出結果。例4見教材第59頁分析:根據物理公式PRU2,當電壓U一定時,輸出功率P是電阻R的反比例函數,則,(2)問中是已知自變量R的取值范圍,即110R220,求函數P的取值范圍,根據反比例函數的性質,電阻越大則功率越小,得220P440例1(補充)為了預防疾病,某單位對辦公室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數關系式為 ,自變量x的取值范為 ;藥物燃燒后,y關于x的函數關系式為 .(2)研究表明,當空氣中每立方米的含藥量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論