甘肅省通渭縣黑燕山學校人教版數(shù)學九年級上冊教案:2512概率的意義_第1頁
甘肅省通渭縣黑燕山學校人教版數(shù)學九年級上冊教案:2512概率的意義_第2頁
甘肅省通渭縣黑燕山學校人教版數(shù)學九年級上冊教案:2512概率的意義_第3頁
甘肅省通渭縣黑燕山學校人教版數(shù)學九年級上冊教案:2512概率的意義_第4頁
全文預覽已結(jié)束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、教學時間課題25.1.2 概率的意義課型新授課教學目標知識和能力1.知道通過大量重復試驗時的頻率可以作為事件發(fā)生概率的估計值2.在具體情境中了解概率的意義過程和方法讓學生經(jīng)歷猜想試驗-收集數(shù)據(jù)-分析結(jié)果的探索過程,豐富對隨機現(xiàn)象的體驗,體會概率是描述不確定現(xiàn)象規(guī)律的數(shù)學模型.初步理解頻率與概率的關系.情感態(tài)度價值觀在合作探究學習過程中,激發(fā)學生學習的好奇心與求知欲.體驗數(shù)學的價值與學習的樂趣.通過概率意義教學,滲透辯證思想教育.教學重點在具體情境中了解概率意義.教學難點對頻率與概率關系的初步理解教學準備教師壹元硬幣數(shù)枚、圖釘數(shù)枚、多媒體課件學生“五個一”課 堂 教 學 程 序 設 計設計意圖一

2、、創(chuàng)設情境,引出問題教師提出問題:周末市體育場有一場精彩的籃球比賽,老師手中只有一張球票,小強與小明都是班里的籃球迷,兩人都想去.我很為難,真不知該把球給誰.請大家?guī)臀蚁雮€辦法來決定把球票給誰.學生:抓鬮、抽簽、猜拳、投硬幣,教師對同學的較好想法予以肯定.(學生肯定有許多較好的想法,在眾多方法中推舉出大家較認可的方法.如抓鬮、投硬幣)追問,為什么要用抓鬮、投硬幣的方法呢? 由學生討論:這樣做公平.能保證小強與小明得到球票的可能性一樣大在學生討論發(fā)言后,教師評價歸納.用拋擲硬幣的方法分配球票是個隨機事件,盡管事先不能確定“正面朝上”還上“反面朝上”,但同學們很容易感覺到或猜到這兩個隨機事件發(fā)生的

3、可能性是一樣的,各占一半,所以小強、小明得到球票的可能性一樣大.質(zhì)疑:那么,這種直覺是否真的是正確的呢?引導學生以投擲壹元硬幣為例,不妨動手做投擲硬幣的試驗來驗證一下.說明:現(xiàn)實中不確定現(xiàn)象是大量存在的, 新課標指出:“學生數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義、富有挑戰(zhàn)的”,設置實際生活問題情境貼近學生的生活實際,很容易激發(fā)學生的學習熱情,教師應對此予以肯定,并鼓勵學生積極思考,為課堂教學營造民主和諧的氣氛,也為下一步引導學生開展探索交流活動打下基礎.二 、動手實踐,合作探究1教師布置試驗任務.(1)明確規(guī)則.把全班分成10組,每組中有一名學生投擲硬幣,另一名同學作記錄,其余同學觀察試驗必須在同樣

4、條件下進行.(2)明確任務,每組擲幣50次,以實事求是的態(tài)度,認真統(tǒng)計“正面朝上” 的頻數(shù)及 “正面朝上”的頻率,整理試驗的數(shù)據(jù),并記錄下來.2教師巡視學生分組試驗情況.注意:(1)觀察學生在探究活動中,是否積極參與試驗活動、是否愿意交流等,關注學生是否積極思考、勇于克服困難.(2)要求真實記錄試驗情況.對于合作學習中有可能產(chǎn)生的紀律問題予以調(diào)控.3.各組匯報實驗結(jié)果.由于試驗次數(shù)較少,所以有可能有些組試驗獲得的“正面朝上”的頻率與先前的猜想有出入.提出問題:是不是我們的猜想出了問題?引導學生分析討論產(chǎn)生差異的原因.在學生充分討論的基礎上,啟發(fā)學生分析討論產(chǎn)生差異的原因.使學生認識到每次隨機試

5、驗的頻率具有不確定性,同時相信隨機事件發(fā)生的頻率也有規(guī)律性, 引導他們小組合作,進一步探究. 解決的辦法是增加試驗的次數(shù),鑒于課堂時間有限,引導學生進行全班交流合作.4全班交流.把各組測得數(shù)據(jù)一一匯報,教師將各組數(shù)據(jù)記錄在黑板上.全班同學對數(shù)據(jù)進行累計,按照書上P140要求填好25-2.并根據(jù)所整理的數(shù)據(jù),在25.1-1圖上標注出對應的點,完成統(tǒng)計圖.表25-2拋擲次數(shù)50100150200250300350400450500“正面向上”的頻數(shù) “正面向上”的頻率 0.51正面向上的頻率投擲次數(shù)n10050250150500450300350200圖25.1-1想一想1(投影出示). 觀察統(tǒng)計

6、表與統(tǒng)計圖,你發(fā)現(xiàn)“正面向上”的頻率有什么規(guī)律? 注意學生的語言表述情況,意思正確予以肯定與鼓勵.“正面朝上”的頻率在0.5上下波動.想一想2(投影出示)隨著拋擲次數(shù)增加,“正面向上”的頻率變化趨勢有何規(guī)律?在學生討論的基礎上,教師幫助歸納.使學生認識到每次試驗中隨機事件發(fā)生的頻率具有不確定性,同時發(fā)現(xiàn)隨機事件發(fā)生的頻率也有規(guī)律性.在試驗次數(shù)較少時,“正面朝上”的頻率起伏較大,而隨著試驗次數(shù)的逐漸增加,一般地,頻率會趨于穩(wěn)定,“正面朝上”的頻率越來越接近0.5. 這也與我們剛開始的猜想是一致的.我們就用0.5這個常數(shù)表示“正面向上”發(fā)生的可能性的大小. 說明:注意幫助解決學生在填寫統(tǒng)計表與統(tǒng)計

7、圖遇到的困難.通過以上實踐探究活動,讓學生真實地感受到、清楚地觀察到試驗所體現(xiàn)的規(guī)律,即大量重復試驗事件發(fā)生的頻率接近事件發(fā)生的可能性的大?。ǜ怕剩?鼓勵學生在學習中要積極合作交流,思考探究.學會傾聽別人意見,勇于表達自己的見解. 為了給學生提供大量的、快捷的試驗數(shù)據(jù),利用計算機模擬擲硬幣試驗的課件,豐富學生的體驗、提高課堂教學效率,使他們能直觀地、便捷地觀察到試驗結(jié)果的規(guī)律性-大量重復試驗中,事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近 .其實,歷史上有許多著名數(shù)學家也做過擲硬幣的試驗.讓學生閱讀歷史上數(shù)學家做擲幣試驗的數(shù)據(jù)統(tǒng)計表(看書P141表25-3).表25-3通過以上學生親自動手實踐,電腦輔

8、助演示,歷史材料展示, 讓學生真實地感受到、清楚地觀察到試驗所體現(xiàn)的規(guī)律,大量重復試驗中,事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù)附近,即大量重復試驗事件發(fā)生的頻率接近事件發(fā)生的可能性的大?。ǜ怕剩?同時,又感受到無論試驗次數(shù)多么大,也無法保證事件發(fā)生的頻率充分地接近事件發(fā)生的概率.在探究學習過程中,應注意評價學生在活動中參與程度、自信心、是否愿意交流等,鼓勵學生在學習中不怕困難積極思考,敢于表達自己的觀點與感受,養(yǎng)成實事求是的科學態(tài)度.5.下面我們能否研究一下“反面向上”的頻率情況?學生自然可依照“正面朝上”的研究方法,很容易總結(jié)得出:“反面向上”的頻率也相應穩(wěn)定到0.5.教師歸納:(1)由以上試驗

9、,我們驗證了開始的猜想,即拋擲一枚質(zhì)地均勻的硬幣時,“正面向上”與“反面向上”的可能性相等(各占一半).也就是說,用拋擲硬幣的方法可以使小明與小強得到球票的可能性一樣.(2)在實際生活還有許多這樣的例子,如在足球比賽中,裁判用擲硬幣的辦法來決定雙方的比賽場地等等.說明:這個環(huán)節(jié),讓學生親身經(jīng)歷了猜想試驗收集數(shù)據(jù)分析結(jié)果的探索過程,在真實數(shù)據(jù)的分析中形成數(shù)學思考,在討論交流中達成知識的主動建構(gòu),為下一環(huán)節(jié)概率意義的教學作了很好的鋪墊.三、評價概括,揭示新知問題1.通過以上大量試驗,你對頻率有什么新的認識?有沒有發(fā)現(xiàn)頻率還有其他作用?學生探究交流.發(fā)現(xiàn)隨機事件的可能性的大小可以用隨機事件發(fā)生的頻率

10、逐漸穩(wěn)定到的值(或常數(shù))估計或去描述.通過猜想試驗及探究討論,學生不難有以上認識.對學生可能存在語言上、描述中的不準確等注意予以糾正,但要求不必過高.歸納:以上我們用隨機事件發(fā)生的頻率逐漸穩(wěn)定到的常數(shù)刻畫了隨機事件的可能性的大小.那么我們給這樣的常數(shù)一個名稱,引入概率定義.給出概率定義(板書):一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p. 注意指出:1概率是隨機事件發(fā)生的可能性的大小的數(shù)量反映.2概率是事件在大量重復試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復試驗中事件發(fā)生的頻率去估計得到

11、事件發(fā)生的概率,但二者不能簡單地等同. 想一想(學生交流討論)問題2頻率與概率有什么區(qū)別與聯(lián)系?從定義可以得到二者的聯(lián)系, 可用大量重復試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.說明:猜想試驗、分析討論、合作探究的學習方式十分有益于學生對概率意義的理解,使之明確頻率與概率的聯(lián)系,也使本節(jié)課教學重難點得以突破.為下節(jié)課進一步研究概率和今后的學習打下了基礎. 當然,學生隨機觀念的養(yǎng)成是循序漸進的、長期的.這節(jié)課教學應把握教學難度,注意關注學生接受情況.四練習鞏固,發(fā)展提高. 學生練習1書上P131.練習.1. 鞏固用頻率估計概率的方法.2書上P131.練習.2 鞏固對概率意義的理解.教師應當關注學生對知識掌握情況,幫助學生解決遇到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論