大學(xué)物理知識點(diǎn)整理_第1頁
大學(xué)物理知識點(diǎn)整理_第2頁
大學(xué)物理知識點(diǎn)整理_第3頁
大學(xué)物理知識點(diǎn)整理_第4頁
大學(xué)物理知識點(diǎn)整理_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、word第2章 質(zhì)點(diǎn)動力學(xué) 一、質(zhì)點(diǎn):是物體的理想模型。它只有質(zhì)量而沒有大小。平動物體可作為質(zhì)點(diǎn)運(yùn)動來處理,或物體的形狀大小對物體運(yùn)動狀態(tài)的影響可忽略不計(jì)是也可近似為質(zhì)點(diǎn)。二、力:是物體間的相互作用。分為接觸作用與場作用。在經(jīng)典力學(xué)中,場作用主要為萬有引力重力,接觸作用主要為彈性力與摩擦力。1、彈性力:   為形變量2、摩擦力:摩擦力的方向永遠(yuǎn)與相對運(yùn)動方向或趨勢相反。   固體間的靜摩擦力:    最大值   固體間的滑動摩擦力:3、流體阻力:  或  。4、萬有引力: &

2、#160; 特例:在地球引力場中,在地球外表附近:。         式中R為地球半徑,M為地球質(zhì)量。   在地球上方較大,。   在地球內(nèi)部,。三、慣性參考系中的力學(xué)規(guī)律  牛頓三定律牛頓第一定律:時(shí),。牛頓第一定律說明了慣性與力的概念,定義了慣性系。牛頓第二定律:普遍形式:;經(jīng)典形式:   為恒量牛頓第三定律:。牛頓運(yùn)動定律是物體低速運(yùn)動時(shí)所遵循的動力學(xué)根本規(guī)律,是經(jīng)典力學(xué)的根底。四、非慣性參考系中的力學(xué)規(guī)律1、慣性力:慣性力沒有施力物體,因

3、此它也不存在反作用力。但慣性力同樣能改變物體相對于參考系的運(yùn)動狀態(tài),這表達(dá)了慣性力就是參考系的加速度效應(yīng)。2、引入慣性力后,非慣性系中力學(xué)規(guī)律:五、求解動力學(xué)問題的主要步驟恒力作用下的連接體約束運(yùn)動:選取研究對象,分析運(yùn)動趨勢,畫出隔離體示力圖,列出分量式的運(yùn)動方程。變力作用下的單質(zhì)點(diǎn)運(yùn)動:分析力函數(shù),選取坐標(biāo)系,列運(yùn)動方程,用積分法求解。第3章 機(jī)械能和功 一、功1、功能的定義式:恒力的功:變力的功:2、保守力假設(shè)某力所作的功僅取決于始末位置而與經(jīng)歷的路徑無關(guān),那么該力稱保守力?;驖M足下述關(guān)系的力稱保守力:       

4、3、幾種常見的保守力的功:1重力的功:2萬有引力的功:3彈性力的功:4、功率   二、勢能保守力的功只取決于相對位置的改變而與路徑無關(guān)。由相對位置決定系統(tǒng)所具有的能量稱之為勢能。1、常見的勢能有1重力勢能  2萬有引力勢能  3彈性勢能  2、勢能與保守力的關(guān)系1保守力的功等于勢能的減少  2保守力為勢能函數(shù)的梯度負(fù)值。  3勢能曲線    勢能曲線能很直觀地表述一維運(yùn)動的主要特征,如運(yùn)動范圍,平衡位置,保守力隨位置的變化情況,動能與勢能的相互轉(zhuǎn)換等。三、動能定理、功能原理、機(jī)械能守恒定律

5、60;   功可分為:外力的功、保守內(nèi)力的功、和非保守內(nèi)力的功1、  質(zhì)點(diǎn)動能定理:2、質(zhì)點(diǎn)系動能定理:3、功能原理:4、機(jī)械能守恒定律:,時(shí),第4章  動量和角動量 一、動量定理1、動量和均為描述機(jī)械運(yùn)動的狀態(tài)量,但兩者有重要區(qū)別:是物體之間傳遞機(jī)械運(yùn)動的量度;是物體的機(jī)械運(yùn)動形式與其他運(yùn)動形式相互轉(zhuǎn)換的一種量度。2、沖量:沖量是力對時(shí)間的累積,導(dǎo)致機(jī)械運(yùn)動的傳遞。    3、動量定理:質(zhì)點(diǎn):。質(zhì)點(diǎn)系:二、動量守恒定律矢量式:;   分量式:利用某一方向上的動量守恒分量式??珊喗莸亟鉀Q力學(xué)問題。三、碰撞

6、問題滿足動量守恒定律:滿足牛頓規(guī)那么沿碰撞方向;?;謴?fù)系數(shù)  四、火箭飛行問題箭體運(yùn)動方程:?;鸺w行速度:五、質(zhì)心:質(zhì)心是質(zhì)點(diǎn)系中運(yùn)動特別簡單,能代表質(zhì)點(diǎn)系整體運(yùn)動的特殊點(diǎn)。1、質(zhì)心位置   或  。2、質(zhì)點(diǎn)系動量 3、質(zhì)心運(yùn)動定理  六、質(zhì)點(diǎn)角動量及其規(guī)律1、角動量: 角動量是與各質(zhì)點(diǎn)動量和參考點(diǎn)位置有關(guān)的狀態(tài)量。1質(zhì)點(diǎn):。2質(zhì)點(diǎn)系:2、角動量規(guī)律1轉(zhuǎn)動動力學(xué)方程:。2角動量定理:3角動量守恒定律:。第5章  剛體力學(xué)根底 一、剛體定軸轉(zhuǎn)動的運(yùn)動學(xué)描述    角位移,角速度,角加速

7、度    在勻變速轉(zhuǎn)動條件下,即角加速度為常數(shù)時(shí)有:    ;      ;      角速度是矢量,在定軸轉(zhuǎn)動中其方向沿著軸向,它與剛體中r處點(diǎn)的線速度的矢量關(guān)系:角速度是矢量,在定軸轉(zhuǎn)動中其方向沿著軸向,它與剛體中r處點(diǎn)的線加速度關(guān)系:其中:為切向加速度:為法向加速度。二、轉(zhuǎn)動定律1、力矩  力矩一般說來是一空間矢量,在定軸轉(zhuǎn)動中,角速度方向已經(jīng)確定,沿轉(zhuǎn)動軸方向,剛體轉(zhuǎn)動狀態(tài)的改變只與力矩在這一方向上的分量有關(guān)。在定軸轉(zhuǎn)

8、動中,力矩可簡化為代數(shù)量。其量值:2、轉(zhuǎn)動慣量  J轉(zhuǎn)動慣量是表示物體轉(zhuǎn)動慣性的物理量,它與物體的質(zhì)量大小、質(zhì)量的分布及轉(zhuǎn)軸位置都有關(guān)系,是轉(zhuǎn)動問題中的一個(gè)重要的物理量:1定義式:不連續(xù)分布的質(zhì)點(diǎn)系:    質(zhì)量連續(xù)分布的物體:    2平行軸定理:任意物體繞某固定軸O的轉(zhuǎn)動慣量為,繞通過質(zhì)心C而平行于固定軸O的轉(zhuǎn)動慣量為,O軸與C軸間距為d,轉(zhuǎn)動物體的總質(zhì)量為m,那么:3垂直軸定理:    在平面上,有一薄形板,薄板饒軸的轉(zhuǎn)動慣量為,薄板饒軸的轉(zhuǎn)動慣量為,那么,薄板饒通過軸的交點(diǎn)O垂直于平面的

9、軸的轉(zhuǎn)動慣量:。轉(zhuǎn)動慣量除上述的計(jì)算方法,對于勻質(zhì)簡單形狀的幾何體可查表查得它的轉(zhuǎn)動慣量,對于非勻質(zhì)或不規(guī)那么的物體我們可以經(jīng)過實(shí)驗(yàn)方法來測定。3、轉(zhuǎn)動定律:一般形式為:在剛體定軸轉(zhuǎn)動中:轉(zhuǎn)動定律是轉(zhuǎn)動問題中的根本規(guī)律,它的地位與質(zhì)點(diǎn)動力學(xué)牛頓第二定律相當(dāng)。用轉(zhuǎn)動定律的解題步驟也與牛頓第二定律類同。仍為分析研究對象,畫出隔離體受力圖,選取適宜坐標(biāo),列出相應(yīng)方程,和求解討論。因注意到、相對同一軸而言,是個(gè)代數(shù)式。三、角動量原理1、剛體定軸轉(zhuǎn)動角動量:  2、角動量原理:一般形式:  剛體定軸轉(zhuǎn)動: 3、角動量守恒定律:系統(tǒng)質(zhì)點(diǎn)系或物體組受到的合外矩為零,那么系統(tǒng)的角動量守恒。

10、        恒矢量物體組繞z軸做定軸轉(zhuǎn)動時(shí):       恒量應(yīng)用角動量守恒定律時(shí)應(yīng)注意:1合外力矩為零的條件而不是合外力為零的條件2適用于慣性參照系或質(zhì)心參照系,對同一轉(zhuǎn)軸而言3適用于剛體也適用于非剛體4適用于宏觀也適用于微觀四、轉(zhuǎn)動中的功能關(guān)系1、力矩的功: 2、剛體的轉(zhuǎn)動動能: 3、功能定理:式中是指內(nèi)力、外力、內(nèi)力矩、外力矩的總功,而動能和是質(zhì)心的平動動能與剛體或非剛體繞質(zhì)心轉(zhuǎn)動動能的總和。4、機(jī)械能守恒非保守內(nèi)力、內(nèi)力矩、非保守外力和外力矩不作功時(shí)系統(tǒng)

11、的總機(jī)能保持不變。       恒量五、剛體的平面運(yùn)動剛體中某一平面,被限制在一固定平面內(nèi)運(yùn)動,有三個(gè)自由度,處理剛體平面運(yùn)動有如下的方法:方法一,剛體平面運(yùn)動可以分解為以質(zhì)心運(yùn)動為代表的平動和繞過質(zhì)心的垂直軸的轉(zhuǎn)動。質(zhì)心運(yùn)動服從質(zhì)心運(yùn)動規(guī)律。        繞質(zhì)心軸轉(zhuǎn)動服從質(zhì)心系轉(zhuǎn)動定律和動能定理        方法二,剛體平面運(yùn)動可視為饒瞬時(shí)轉(zhuǎn)軸P作純轉(zhuǎn)動。對瞬軸的動能定理;  &#

12、160; 式中但對瞬軸的轉(zhuǎn)動定律,只有在是個(gè)常數(shù)的條件下才能成立,例如圓柱體和球作純滾動時(shí),那么對瞬時(shí)軸的轉(zhuǎn)動定律才成立。   六、剛體的進(jìn)動進(jìn)動是剛體的一種非定點(diǎn)運(yùn)動,繞自轉(zhuǎn)軸轉(zhuǎn)動的回轉(zhuǎn)儀在重力矩作用下,非但不會傾倒;而且自轉(zhuǎn)軸還會旋轉(zhuǎn)。1、回轉(zhuǎn)儀進(jìn)動的物理實(shí)質(zhì)在轉(zhuǎn)動參照系中觀察重力矩作用使回轉(zhuǎn)儀傾倒;回轉(zhuǎn)儀傾倒而產(chǎn)生垂直于自轉(zhuǎn)軸的慣性力矩,使回轉(zhuǎn)儀進(jìn)動;回轉(zhuǎn)儀進(jìn)動又產(chǎn)生與重力矩平衡的慣性力矩,使回轉(zhuǎn)儀不再傾倒,繼續(xù)進(jìn)動。2、回轉(zhuǎn)儀進(jìn)動方向的規(guī)那么回轉(zhuǎn)儀的進(jìn)動使其自轉(zhuǎn)角速度的指向,具有向外加力矩指向靠攏的趨勢。  3、回轉(zhuǎn)儀進(jìn)動角速度:  對于給定剛體

13、,進(jìn)動角速度的大小,與外加力矩成正比,與剛體自轉(zhuǎn)角速度成反比。第6章  振動力學(xué)根底 一、產(chǎn)生諧振動的動力學(xué)條件物體受到的合外力或合外力矩為零的位置,我們稱之為平衡位置。當(dāng)物體偏離平衡位置時(shí),物體受到與位移成正比與位移方向相反的恢復(fù)力,或受到與角位移成正比與角位移方向相反的恢復(fù)力矩作用時(shí)物體將作諧振動。1、彈簧振子圖6-1   這微分方程的解為:式中圓頻率由此可得振動周期2、復(fù)擺物理擺式中b為支點(diǎn)到質(zhì)心的距離,也常用表示。這微分方程的解為:式中圓頻率,由此可得振動周期3、其他類型簡諧振動的一般求解步驟:1選取適宜的坐標(biāo),找出平衡位置。2寫出在平衡位置處物體所受各力

14、的平衡條件,在此較簡單的情況下這一步可省略。3給一微擾使物體偏離平衡位置,畫出物體的受力圖,找出回復(fù)力或回復(fù)力矩的表達(dá)式。4列出動力學(xué)微分方程,與標(biāo)準(zhǔn)諧振動微分方程比擬系數(shù),可得諧振動的圓頻率和周期。二、諧振動的運(yùn)動學(xué)描述有三種形式:1、解析式諧振動的運(yùn)動方程為將此式分別對時(shí)間求一次,二次導(dǎo)數(shù)可相應(yīng)得到振子的速度和加速度a隨時(shí)間的函數(shù)表達(dá)式:                      &

15、#160;       事實(shí)上速度和加速度a還應(yīng)是位移x的函數(shù):                  ,    在運(yùn)動方程中圓頻率或周期T是由力學(xué)條件所確定的,而振幅A和初相位是由初始條件所確定的。將代入位移和速度的表達(dá)式可得:  由此可解出:,  2、用旋轉(zhuǎn)矢量即參考圓描述旋轉(zhuǎn)矢量,以勻角速逆時(shí)針旋轉(zhuǎn),矢端M點(diǎn)在X軸上

16、的投影P點(diǎn)的運(yùn)動方程:卻好是諧振動方程,且M點(diǎn)勻速圓周運(yùn)動的速度和加速度在X軸上的投影和也卻好是P點(diǎn)在X軸上作諧振動的速度和加速度。所以用參考圓來描述諧振動比擬簡單直觀,容易記憶如圖6-3所示。3、用諧動圖線描述諧振動的位移、速度和加速度隨時(shí)間變化的曲線如圖 4 所示。一般要求看懂位移x和速度和加速度三條曲線的相位關(guān)系依次超前。三、諧振動的能量彈性勢能:  動能:彈簧振子系統(tǒng)的總能量:四、諧振動的合成1、同方向同頻率兩個(gè)諧振動的合成設(shè)諧振動            合成后的諧振動

17、0;         式中:; 此關(guān)系式用旋轉(zhuǎn)矢量圖6-5那么很容易理解和記憶。當(dāng):        那么         那么   2、同方向頻率相近的諧振動合成合成后的圓頻率為其平均圓頻率或其頻率,合成后產(chǎn)生的拍頻  。3、互相垂直的諧振動合成兩個(gè)相互垂直的同頻率諧振動合成的質(zhì)點(diǎn)運(yùn)動軌跡一般為橢圓,在一定條件下也可能為圓或直線。軌跡的形狀決定于兩

18、振動的相位差與振幅,當(dāng)兩個(gè)諧振動頻率不相等,但有簡單的整數(shù)比時(shí),質(zhì)點(diǎn)的運(yùn)動軌跡為李薩如圖形。五、阻尼振動當(dāng)彈簧振子在振動過程中受到的阻力與速度大小成正比與速度方向相反的阻力作用時(shí),振子的動力學(xué)方程為: 式中為阻尼系數(shù)。假設(shè)令,那么上式可改寫為:    在小阻尼情況下,即的條件下其微分方程的解為:,其中  ;可得周期  在大阻尼情況下即就不再是周期運(yùn)動了。六、有阻尼的受迫振動有阻尼的受迫振動的動力學(xué)方程為:式中H為強(qiáng)迫力的最大值,p為強(qiáng)迫力的圓頻率。假設(shè)令;上式可寫為:該微分方程的解為:前項(xiàng)就是阻尼振動,隨時(shí)間的增加而很快消失,后項(xiàng)是穩(wěn)定的振動,

19、其中振幅B由下式表示:由此式可知當(dāng)強(qiáng)迫力頻率與固有頻率相差很大時(shí)強(qiáng)迫振動振幅就很小,而強(qiáng)迫力頻率和固有頻率接近時(shí),強(qiáng)迫振動的振幅就很大,這種情況稱之謂共振。第7章  狹義相對論根底 一、狹義相對論根本假設(shè)1、狹義相對性原理:物理定律對一切慣性系等價(jià)。2、光速不變原理:真空中光速與光源或觀察者的運(yùn)動無關(guān)。二、時(shí)空相對性1、動鐘變慢效應(yīng):2、動尺縮短效應(yīng):三、相對論運(yùn)動學(xué)1、洛侖茲坐標(biāo)變換式:;。2、愛因斯坦速度變換式:;。四、相對論動力學(xué)1、相對論質(zhì)量:2、相對論動量:3、相對論動力學(xué)方程:五、相對論能量1、相對論能量:2、相對論動能:3、相對論靜能:六、相對論能量與動量關(guān)系第8章&#

20、160; 熱力學(xué)平衡態(tài) 一、理想氣體狀態(tài)方程1、平衡態(tài)的概念系統(tǒng)與外界沒有能量交換,系統(tǒng)內(nèi)部也沒有任何形式的能量轉(zhuǎn)換,氣體各局部具有相同的溫度和壓力,而且溫度和壓力也不隨時(shí)間而變化的這種狀態(tài)叫平衡態(tài)。2、理想氣體的狀態(tài)方程這狀態(tài)方程只適用于平衡態(tài)。式中理想氣體普適常數(shù):3、壓力與單位體積內(nèi)分子數(shù)與溫度的關(guān)系:          式中,表示單位體積內(nèi)的分子數(shù),    ,稱為玻爾茲曼常數(shù)。式中,為阿伏枷德羅常數(shù)二、氣體分子運(yùn)動論1、宏觀量與微觀量氣體的溫度、壓力是大量分子熱運(yùn)動的

21、集體表現(xiàn),這些描述大量分子集體特征的物理量叫做宏觀量。組成氣體的每一分子具有一定的質(zhì)量、體積、速度、能量等,這些描述單個(gè)分子的物理量叫做微觀量。氣體分子運(yùn)動論就是根據(jù)理想氣體分子模型用統(tǒng)計(jì)的方法研究氣體的宏觀現(xiàn)象的微觀本質(zhì),建立宏觀量與微觀量的平均值之間關(guān)系的理論。2、理想氣體的微觀模型。一力學(xué)假設(shè):    1氣體分子的線度遠(yuǎn)小于分子間距。    2氣體分子可看作為彈性小球,它的運(yùn)動規(guī)律遵守牛頓運(yùn)動定律。    3除碰撞瞬間外,分子間相互作用力可忽略不計(jì)。二平衡態(tài)時(shí)的統(tǒng)計(jì)假設(shè):  &#

22、160; 1分子向各個(gè)方向運(yùn)動的時(shí)機(jī)均等。    2分子速度在各個(gè)方向上分量的各種平均值也相等。             有   3、理想氣體的壓力公式         4、氣體分子的平均平動動能與溫度的關(guān)系       它揭示了宏觀量溫度是氣體分子無規(guī)那么運(yùn)動量度的物理本質(zhì)。5、能量均分

23、原理任一自由度上的平均能量都是,這叫能量均分原理。表示平動自由度,表示其轉(zhuǎn)動自由度,S表示其振動自由度,分子的總自由度:       1單原子分子:         2在溫度不太高的條件下,雙原子分子可看成剛性分子,振動自由度S取零得:     剛性雙原子分子            3剛性多原子分子 

24、;           6、理想氣體的內(nèi)能       理想氣體的內(nèi)能是系統(tǒng)狀態(tài)的單值函數(shù)。三、麥克斯韋速率分布1、麥克斯韋速率分布函數(shù)的意義         表示單位速率區(qū)間內(nèi)的分子數(shù)占總分子數(shù)的比率。2、麥克斯韋速率分布函數(shù)         它滿足歸一化條件   &

25、#160;  3、三個(gè)統(tǒng)計(jì)速率1最可幾速率:時(shí)       2平均速率:       3均方根速率      4、麥克斯韋速率分布曲線主要特點(diǎn):1曲線與速度軸所包圍的面積為1。2最可幾速率附近的分子數(shù)比率最大,速率很大或很小的分子數(shù)比率都很少。3溫度升高曲線右移,曲線比擬平坦;溫度降低曲線左移,曲線比擬陡。4同溫度下分子量較大的氣體分子的速率分布曲線在分子量較小的速率分布曲線的左邊。四、麥克斯韋速度分布在速度區(qū)間到,

26、到,到內(nèi)的總分子數(shù)占總分子數(shù)的比率:                  分子對器壁單位面積上碰撞的頻率:             五、玻耳茲曼統(tǒng)計(jì)分布      式中稱為玻耳茲曼因子,其中和表示分子動能和分子在外場中的勢能。重力場中粒子按高度分布:  

27、;           第9章  熱力學(xué)定律 一、熱力學(xué)第一定律1、熱力學(xué)第一定律:熱力學(xué)第一定律是包括熱現(xiàn)象在內(nèi)的能量守恒和轉(zhuǎn)換定律。它的數(shù)學(xué)表達(dá)式為:                    微分形式        &

28、#160;         積分形式熱力學(xué)第一定律說明了:系統(tǒng)吸收的熱量一局部使系統(tǒng)的內(nèi)能增加,另一局部使系統(tǒng)對外作功。應(yīng)用熱力學(xué)第一定律時(shí)必須要注意各物理量的正負(fù)號。系統(tǒng)吸熱取“+號,放熱取“-號。系統(tǒng)對外作功取“+號,外界對系統(tǒng)作功取“-號。2、熱力學(xué)第一定律在理想氣體等值過程中應(yīng)用的比擬表:過程過程方程吸收熱量Q內(nèi)能增量對外作功A摩爾熱容C等容0等壓或等溫或0或絕熱0或0多方或這“比擬表的主要特點(diǎn):1內(nèi)能E是系統(tǒng)狀態(tài)溫度的單值函數(shù)      

29、0;   內(nèi)能是個(gè)狀態(tài)量。內(nèi)能的增量只決定于初末兩個(gè)狀態(tài),與所經(jīng)歷的過程無關(guān)。所以表中內(nèi)能增量的表達(dá)式都是:       2功A是通過宏觀位移來傳遞能量的過程量。所以表中功的表達(dá)式因過程不同而不同,但功都可從功的定義求得,即:            3熱量Q是通過分子間相互作用來傳遞能量的過程量。表中Q都可由熱力學(xué)第一定律來求得:      

30、60;            或者:       式中C為摩爾熱容量。由于Q是過程量,因此式中C要與具體的過程量相對應(yīng)。4摩爾熱容:     定容摩爾熱容:;定壓摩爾熱容:;     比熱容比:     摩爾熱容C為常量的過程為多方過程。在多方過程中:      

31、60;             可見,當(dāng)n=0時(shí)為等壓過程,n=1時(shí)為等溫過程           當(dāng)n=時(shí)為絕熱過程,時(shí)為等容過程二、循環(huán)過程1、循環(huán)過程的特點(diǎn):1每經(jīng)歷一個(gè)循環(huán),系統(tǒng)內(nèi)能沒有改變;2每一循環(huán)所作的功在數(shù)值上等于圖封閉曲線所包圍的面積。3熱循環(huán)的效率:           

32、;     式中表示系統(tǒng)所吸收的熱量,表示系統(tǒng)所放出的熱量。2、卡諾循環(huán)1卡諾循環(huán)由兩絕熱過程和兩等溫過程組成2卡諾循環(huán)的效率          3卡諾循環(huán)的意義指出了所有熱機(jī)的效率都小于1,提高熱機(jī)效率的有效途徑是提高高溫?zé)嵩吹臏囟???ㄖZ循環(huán)為確立熱力學(xué)第二定律奠定了根底。3、致冷循環(huán)1與熱機(jī)相反方向的循環(huán)為致冷循環(huán)。P-V圖上逆時(shí)針循環(huán)所包圍曲線的面積為外界所作的功A。2致冷系數(shù):       

33、;           對卡諾致冷機(jī)而言:             3要從低溫?zé)嵩次崃肯蚋邷責(zé)嵩此?,外界必須要消耗功為代價(jià),對卡諾致冷機(jī)而言,外界所需作的功:             4供熱系數(shù):      

34、;       三、熱力學(xué)第二定律:1、可逆過程與不可逆過程某一過程P中一物體從狀態(tài)A變?yōu)闋顟B(tài)B,如果我們能使?fàn)顟B(tài)逆向變化。從狀態(tài)B回到初態(tài)A時(shí),周圍一切也都各自回復(fù)原狀。過程P就稱為可逆過程。如果物體不能回復(fù)至原狀態(tài)A,或當(dāng)物體回復(fù)到原狀態(tài)A時(shí)而周圍并不能回復(fù)原狀。那么過程P稱為不可逆過程。滿足機(jī)械能守恒的純力學(xué)過程是可逆過程。熱力學(xué)過程中準(zhǔn)靜態(tài)變化過程也是可逆過程。只有理想過程才能是可逆過程。一切實(shí)際過程都是不可逆過程。熱力學(xué)中從非平衡狀態(tài)到平衡態(tài)如熱傳導(dǎo)、擴(kuò)散、氣體自由膨脹等都是不可逆過程。機(jī)械運(yùn)動轉(zhuǎn)化為熱運(yùn)動也是不可逆過程。

35、2、卡諾定理1在相同高溫?zé)嵩礈囟葹榕c相同低溫?zé)嵩礈囟葹橹g的一切可逆機(jī)。不管用什么工作物質(zhì)效率都相同。都等于。2在相同高溫?zé)嵩春拖嗤蜏責(zé)嵩粗g工作的一切不可逆機(jī)的效率不可能高于可逆機(jī),即。3、熱力學(xué)第二定律熱力學(xué)第二定律的二種說法:1開爾文說法:不可能制造成一種循環(huán)動作的熱機(jī),只從一個(gè)熱源吸熱使之完全變化為有用的功,而其他物體不發(fā)生任何變化。2克勞修斯說法:熱量不能自動地從低溫物體轉(zhuǎn)向高溫物體。這二種說法不同,其實(shí)質(zhì)是等價(jià)的。熱力學(xué)第二定律說明了自然過程進(jìn)行的方向和條件。用熱力學(xué)第二定律可以判別哪些過程是可以實(shí)現(xiàn)的,而哪些過程是不可能實(shí)現(xiàn)的。4、熵和熵增加原理。1克勞修斯等式:對任意可逆循環(huán)過程都有:           2熵,熵是一態(tài)函數(shù),以符號S表示。定義為:           上式只說明了熵差,我們關(guān)心的也只是熵差就象計(jì)算內(nèi)能的改變,力學(xué)問題中勢能改變一樣熵是描述平衡態(tài)的狀態(tài)函數(shù),系統(tǒng)狀態(tài)確

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論