![八年級數(shù)學上冊第10課時+三角形全等判定(SSS)教案+新人教版_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/aa959bc6-755a-417f-9f7c-4aa376ad6e1b/aa959bc6-755a-417f-9f7c-4aa376ad6e1b1.gif)
![八年級數(shù)學上冊第10課時+三角形全等判定(SSS)教案+新人教版_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/aa959bc6-755a-417f-9f7c-4aa376ad6e1b/aa959bc6-755a-417f-9f7c-4aa376ad6e1b2.gif)
![八年級數(shù)學上冊第10課時+三角形全等判定(SSS)教案+新人教版_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/18/aa959bc6-755a-417f-9f7c-4aa376ad6e1b/aa959bc6-755a-417f-9f7c-4aa376ad6e1b3.gif)
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、三角形全等的判定(SSS)總課題全等三角形總課時數(shù)第 10 課時課 題三角形全等的判定(SSS)主 備 人課型新授時 間教學目標1了解三角形的穩(wěn)定性,會應用“邊邊邊”判定兩個三角形全等 2經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡單的問題 3培養(yǎng)有條理的思考和表達能力,形成良好的合作意識教學重點掌握“邊邊邊”判定兩個三角形全等的方法教學難點理解證明的基本過程,學會綜合分析法教學過程教 學 內(nèi) 容一、設疑求解,操作感知【教師活動】 問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,你對圖中的殘片作哪些測量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流【學生活動】觀察,思考,回答教師的問
2、題方法如下:可以將圖1的玻璃碎片放在一塊紙板上,然后用直尺和鉛筆或水筆畫出一塊完整的三角形如圖2,剪下模板就可去割玻璃了 【理論認知】 如果ABCABC,那么它們的對應邊相等,對應角相等反之,如果ABC與ABC滿足三條邊對應相等,三個角對應相等,即AB=AB,BC=BC,CA=CA,A=A,B=B,C=C 這六個條件,就能保證ABCABC,從剛才的實踐我們可以發(fā)現(xiàn):只要兩個三角形三條對應邊相等,就可以保證這兩塊三角形全等 信不信? 【作圖驗證】(用直尺和圓規(guī)) 先任意畫出一個ABC,再畫一個ABC,使AB=AB,BC=BC,CA=CA把畫出的ABC剪下來,放在ABC上,它們能完全重合嗎?(即全
3、等嗎)【學生活動】拿出直尺和圓規(guī)按上面的要求作圖,并驗證(如課本圖112-2所示) 畫一個ABC,使AB=AB,AC=AC,BC=BC: 1畫線段取BC=BC; 2分別以B、C為圓心,線段AB、AC為半徑畫弧,兩弧交于點A; 3連接線段AB、AC 【教師活動】巡視、指導,引入課題:“上述的生活實例和尺規(guī)作圖的結果反映了什么規(guī)律?” 【學生活動】在思考、實踐的基礎上可以歸納出下面判定兩個三角形全等的定理 (1)判定方法:三邊對應相等的兩個三角形全等(簡寫成“邊邊邊”或“SSS”) (2)判斷兩個三角形全等的推理過程,叫做證明三角形全等 【評析】通過學生全過程的畫圖、觀察、比較、交流等,逐步探索出
4、最后的結論邊邊邊,在這個過程中,學生不僅得到了兩個三角形全等的條件,同時增強了數(shù)學體驗 二、例題講解【例1】如課本圖1123所示,ABC是一個鋼架,AB=AC,AD是連接點A與BC中點D的支架,求證ABDACD(教師板書) 【教師活動】分析例1,分析:要證明ABDACD,可看這兩個三角形的三條邊是否對應相等 證明:D是BC的中點, BD=CD在ABD和ACD中 ABDACD(SSS) 【評析】符號“”表示“因為”,“”表示“所以”;從例1可以看出,證明是由題設(已知)出發(fā),經(jīng)過一步步的推理,最后推出結論(求證)正確的過程書寫中注意對應頂點要寫在同一個位置上,哪個三角形先寫,哪個三角形的邊就先寫三、實踐應用問題思考】已知AC=FE,BC=DE,點A、D、B、F在直線上,AD=FB(如圖所示),要用“邊邊邊”證明ABCFDE,除了已知中的AC=FE,BC=DE以外,還應該有什么條件?怎樣才能得到這個條件? 【教師活動】提出問題,巡視、引導學生,并請學生說說自己的想法 【學生活動】先獨立思考后,再發(fā)言:“還應該有AB=FD,只要AD=FB兩邊都加上DB即可得到AB=FD” 【教學形式】先獨立思考,再合作交流,師生互動 四、隨堂練習 教材練習 五、課堂總結 1全等三角形性質(zhì)是什么? 2正確地判斷出全等三角形的對應邊、對應角,利用全等三角形處理問題的基礎,你是怎樣掌握判斷對應邊、對應角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷撥鋼筋項目可行性研究報告
- 臨床路徑管理規(guī)范
- 買平房合同范本
- 2025年度特種貨物運輸合同
- 專利許可合同范例 baidu
- 2025年度影視制作劇務助理場記聘用合同范本-@-1
- 制作裝備柜合同范例
- 2025年度跨境電子商務合作合同范本
- 工商管理復習測試卷附答案
- 企業(yè)合作生產(chǎn)合同范本
- 醫(yī)美注射類知識培訓課件
- 2025年廣電網(wǎng)絡公司工作計劃(3篇)
- 貨運車輛駕駛員服務標準化培訓考核試卷
- 銀行行長2024年個人年終總結
- 財務BP經(jīng)營分析報告
- 設備基礎預埋件施工方案
- 中華人民共和國保守國家秘密法實施條例培訓課件
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識 CCAA年度確認 試題與答案
- 2022屆“一本、二本臨界生”動員大會(2023.5)
- 數(shù)學八年級上浙教版3.2直棱柱的表面展開圖同步練習
評論
0/150
提交評論