圓知識點復(fù)習_第1頁
圓知識點復(fù)習_第2頁
圓知識點復(fù)習_第3頁
圓知識點復(fù)習_第4頁
圓知識點復(fù)習_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、 點的軌跡 三種位置關(guān)系 垂徑定理 圓心角定理 圓周角定理 弦切角定理 圓的內(nèi)接四邊形定理 切線的性質(zhì)與判定定理切線長定理相交弦定理兩圓公共弦定理圓的公切線圓內(nèi)正多邊形弧長、扇形面積公式側(cè)面展開圖 圓:圓可以看作是到定點的距離等于定長的點的集合; 圓的外部:可以看作是到定點的距離大于定長的點的集合; 圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合 1、到定點的距離等于定長的點的軌跡是:以定點為圓心,定長為半徑的圓; 2、到線段兩端點距離相等的點的軌跡是:線段的中垂線; 3、到角兩邊距離相等的點的軌跡是:角的平分線; 4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長

2、的兩條直線; 5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線集合:軌跡:點與圓直線與圓圓與圓點在圓內(nèi) dr 點A在圓外 r d d C B A O 直線與圓相離 dr 無交點 直線與圓相切 d=r 有一個交點 直線與圓相交 dR+r 外切(圖2) 有一個交點 d=R+r 相交(圖3) 有兩個交點 R-rdR+r 內(nèi)切(圖4) 有一個交點 d=R-r 內(nèi)含(圖5) 無交點 dR-r 圖1 r R d 圖2 r R d 圖3 r R d 圖4 r R d 圖5 r R d垂徑定理:垂直于弦的直徑平分弦且平分弦所對的弧 推論1:(1)平分弦(不是直徑)的直徑

3、垂直于弦,并且平分弦所對的兩條?。?(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧; (3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 以上共4個定理,簡稱2推3定理:此定理中共5個結(jié)論中,只要知道其中2個即可推出 其它3個結(jié)論,即: AB是直徑 ABCD CE=DE 或 或 推論2:圓的兩條平行弦所夾的弧相等。 即:在 O中,ABCD O E D C B ABCBDACADACBD O C D A B 圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等 此定理也稱1推3定理,即上述四個結(jié)論中,只要知道其中的1個相等,則可以推出其它的3個結(jié)論

4、 也即:AOB=DOE AB=DE OC=OF 或 BAED F E D C B A O圓周角定理:同一條弧所對的圓周角等于它所對的圓心的角的一半即:AOB和ACB是 所對的圓心角和圓周角 AOB=2ACB圓周角定理的推論:推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等弧即:在 O中,C、D都是所對的圓周角 C=D推論2:半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑即:在 O中,AB是直徑 或C=90 C=90 AB是直徑推論3:三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形即:在ABC中,OC=OA=OB ABC是直角三角

5、形或C=90注:此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。AB C B A O D C B A O C B A O C B A O弦切角定理:弦切角等于所夾弧所對的圓周角 推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。即:MN是切線,AB是弦 BAM=BCA O C B N M A圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補,外角等于它的內(nèi)對角。 即:在 O中, 四邊形ABCD是內(nèi)接四邊形 C+BAD=180 B+D=180 DAE=C E D C B A(1)判定定理:過半徑外端且垂直于半徑的直線是切線 兩個條件:過半徑外端且垂直半徑,

6、二者缺一不可 即:MNOA且MN過半徑OA外端 MN是 O的切線(2)性質(zhì)定理:切線垂直于過切點的半徑(如上圖) 推論1:過圓心垂直于切線的直線必過切點 推論2:過切點垂直于切線的直線必過圓心以上三個定理及推論也稱二推一定理:即:過圓心 過切點 垂直切線中知道其中兩個條件推出最后一個條件 MN是切線 MNOA N M A O切線長定理: 從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。即:PA、PB是的兩條切線 PA=PB PO平分BPA P B A O圓內(nèi)相交弦定理及其推論:(1)相交弦定理:圓內(nèi)兩弦相交,交點分得的兩條線段的乘積相等即:在 O中,弦AB、CD

7、相交于點P PAPB=PCPA(2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。即:在 O中,直徑ABCD (3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項即:在 O中,PA是切線,PB是割線 (4)割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等(如上圖)即:在 O中,PB、PE是割線 PC PBPD PE P O D C B A O E D C B A D E C B P A O22CEDEEA EB2PAPC PB圓公共弦定理:連心線垂直平分公共弦 即: O1、 O2相交于A、B兩點 O1O2垂直平分AB B A O1 O2兩圓公切線長的計算公式:(1)公切線長:在RtO1O2C中,(2)外公切線長:CO2是半徑之差; 內(nèi)公切線長:CO2是半徑之和 22221122ABCOOOCO C O2 O1 B A圓內(nèi)正多邊形的計算(1)正三角形 在 O中 ABC是正三角形,有關(guān)計算在RtBOD中進行,OD:BD:OB=(2)正四邊形同理,四邊形的有關(guān)計算在RtOAE中進行,OE :AE:OA=(3)正六邊形同理,六邊形的有關(guān)計算在RtOAB中進行,AB:OB:OA=1:3:21:1:21:3:2 D C B A O E C B A D O B A O(1)弧長公式:(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論