一元二次方程的根與系數(shù)關(guān)系講義_第1頁(yè)
一元二次方程的根與系數(shù)關(guān)系講義_第2頁(yè)
一元二次方程的根與系數(shù)關(guān)系講義_第3頁(yè)
一元二次方程的根與系數(shù)關(guān)系講義_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、一元二次方程根與系數(shù)的關(guān)系一)、一元二次方程的根的判斷式【例1】不解方程,判斷下列方程的實(shí)數(shù)根的個(gè)數(shù):(1) (2) (3) 【例2】已知關(guān)于的一元二次方程,根據(jù)下列條件,分別求出的范圍:(1) 方程有兩個(gè)不相等的實(shí)數(shù)根;(2) 方程有兩個(gè)相等的實(shí)數(shù)根(3)方程有實(shí)數(shù)根;(4) 方程無(wú)實(shí)數(shù)根【例3】已知實(shí)數(shù)、滿足,試求、的值二)、一元二次方程的根與系數(shù)的關(guān)系一元二次方程的兩個(gè)根為:所以:,定理:如果一元二次方程的兩個(gè)根為,那么:說(shuō)明:一元二次方程根與系數(shù)的關(guān)系由十六世紀(jì)的法國(guó)數(shù)學(xué)家韋達(dá)發(fā)現(xiàn),所以通常把此定理稱為”韋達(dá)定理”【例4】若是方程的兩個(gè)根,試求下列各式的值:(1) ;(2) ;(3)

2、;(4) *【例5】一元二次方程有兩個(gè)實(shí)根,一個(gè)比3大,一個(gè)比3小,求的取值范圍。練 習(xí)1一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是()ABCD2若是方程的兩個(gè)根,則的值為()ABCD3已知菱形ABCD的邊長(zhǎng)為5,兩條對(duì)角線交于O點(diǎn),且OA、OB的長(zhǎng)分別是關(guān)于的方程的根,則等于()ABCD4若實(shí)數(shù),且滿足,則的值為()ABCD5若方程的兩根之差為1,則的值是 _ 6設(shè)是方程的兩實(shí)根,是關(guān)于的方程的兩實(shí)根,則= _ ,= _ 7一元二次方程兩根、滿足求取值范圍。8已知關(guān)于的一元二次方程(1) 求證:不論為任何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根;(2) 若方程的兩根為,且滿足,求的值9已知關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根(1) 求的取值范圍;(2) 是否存在實(shí)數(shù),使方程的兩實(shí)根互為相反數(shù)?如果存在,求出的值;如果不存在,請(qǐng)您說(shuō)明理由10若是關(guān)于的方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論