版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、 高中理科數(shù)學(xué)解題方法篇(定點(diǎn)定線定值)1.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為()求橢圓的標(biāo)準(zhǔn)方程;()若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)【標(biāo)準(zhǔn)答案】(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為, (II)設(shè),由得,.以AB為直徑的圓過橢圓的右頂點(diǎn),(最好是用向量點(diǎn)乘來),解得,且滿足.當(dāng)時(shí),直線過定點(diǎn)與已知矛盾;當(dāng)時(shí),直線過定點(diǎn)綜上可知,直線過定點(diǎn),定點(diǎn)坐標(biāo)為2.已知橢圓過點(diǎn),且離心率。 ()求橢圓方程; ()若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍。解:()離
2、心率,即(1);又橢圓過點(diǎn),則,(1)式代入上式,解得,橢圓方程為。()設(shè),弦MN的中點(diǎn)A由得:,直線與橢圓交于不同的兩點(diǎn),即(1)由韋達(dá)定理得:,則,直線AG的斜率為:,由直線AG和直線MN垂直可得:,即,代入(1)式,可得,即,則。3.過拋物線(0)上一定點(diǎn)0),作兩條直線分別交拋物線于,求證:與的斜率存在且傾斜角互補(bǔ)時(shí),直線的斜率為非零常數(shù)【解析】設(shè)直線的斜率為,直線的斜率為由 相減得,故 同理可得, 由傾斜角互補(bǔ)知: 由 相減得, 直線的斜率為非零常數(shù)題型:動(dòng)弦過定點(diǎn)的問題例題5、(07山東理)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3;最小值為1;(
3、)求橢圓C的標(biāo)準(zhǔn)方程;()若直線與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。分析:第一問,是待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;第二問,直線與橢圓C相交于A,B兩點(diǎn),并且橢圓的右頂點(diǎn)和A、B的連線互相垂直,證明直線過定點(diǎn),就是通過垂直建立k、m的一次函數(shù)關(guān)系。解(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,(II)設(shè),由得,(注意:這一步是同類坐標(biāo)變換)(注意:這一步叫同點(diǎn)縱、橫坐標(biāo)間的變換)以AB為直徑的圓過橢圓的右頂點(diǎn)且,解得,且滿足當(dāng)時(shí),直線過定點(diǎn)與已知矛盾;當(dāng)時(shí),直線過定點(diǎn)綜上可知,直線過定點(diǎn),定點(diǎn)坐標(biāo)為練習(xí)1.直線和拋物線相交于
4、A、B,以AB為直徑的圓過拋物線的頂點(diǎn),證明:直線過定點(diǎn),并求定點(diǎn)的坐標(biāo)。分析:以AB為直徑的圓過拋物線的頂點(diǎn)O,則OAOB,若設(shè),則,再通過,將條件轉(zhuǎn)化為,再通過直線和拋物線聯(lián)立,計(jì)算判別式后,可以得到,解出k、m的等式,就可以了。解:設(shè),由得,(這里消x得到的)則(1)由韋達(dá)定理,得:,則,以AB為直徑的圓過拋物線的頂點(diǎn)O,則OAOB,即,可得,則,即,又,則,且使(1)成立,此時(shí),直線恒過點(diǎn)。名師指點(diǎn):這個(gè)題是課本上的很經(jīng)典的題,例題5、(07山東理)就是在這個(gè)題的基礎(chǔ)上,由出題人遷移得到的,解題思維都是一樣的,因此只要能在平時(shí),把我們騰飛學(xué)校老師講解的內(nèi)容理解透,在高考中考取140多分
5、,應(yīng)該不成問題。 本題解決過程中,有一個(gè)消元技巧,就是直線和拋物線聯(lián)立時(shí),要消去一次項(xiàng),計(jì)算量小一些,也運(yùn)用了同類坐標(biāo)變換韋達(dá)定理,同點(diǎn)縱、橫坐標(biāo)變換-直線方程的縱坐標(biāo)表示橫坐標(biāo)。其實(shí)解析幾何就這么點(diǎn)知識(shí),你發(fā)現(xiàn)了嗎?例題6、已知點(diǎn)A、B、C是橢圓E: 上的三點(diǎn),其中點(diǎn)A是橢圓的右頂點(diǎn),直線BC過橢圓的中心O,且,如圖。(I)求點(diǎn)C的坐標(biāo)及橢圓E的方程;(II)若橢圓E上存在兩點(diǎn)P、Q,使得直線PC與直線QC關(guān)于直線對稱,求直線PQ的斜率。解:(I) ,且BC過橢圓的中心O又點(diǎn)C的坐標(biāo)為。A是橢圓的右頂點(diǎn),則橢圓方程為:將點(diǎn)C代入方程,得,橢圓E的方程為(II) 直線PC與直線QC關(guān)于直線對稱
6、,設(shè)直線PC的斜率為,則直線QC的斜率為,從而直線PC的方程為:,即,由消y,整理得:是方程的一個(gè)根,即同理可得:則直線PQ的斜率為定值。方法總結(jié):本題第二問中,由“直線PC與直線QC關(guān)于直線對稱”得兩直線的斜率互為相反數(shù),設(shè)直線PC的斜率為k,就得直線QC的斜率為-k。利用是方程的根,易得點(diǎn)P的橫坐標(biāo):,再將其中的k用-k換下來,就得到了點(diǎn)Q的橫坐標(biāo):,這樣計(jì)算量就減少了許多,在考場上就節(jié)省了大量的時(shí)間。接下來,如果分別利用直線PC、QC的方程通過坐標(biāo)變換法將點(diǎn)P、Q的縱坐標(biāo)也求出來,計(jì)算量會(huì)增加許多。直接計(jì)算、,就降低了計(jì)算量??傊?,本題有兩處是需要同學(xué)們好好想一想,如何解決此類問題,一是
7、過曲線上的點(diǎn)的直線和曲線相交,點(diǎn)的坐標(biāo)是方程組消元后得到的方程的根;二是利用直線的斜率互為相反數(shù),減少計(jì)算量,達(dá)到節(jié)省時(shí)間的目的。練習(xí)1、已知橢圓C:的離心率為,且在x軸上的頂點(diǎn)分別為A1(-2,0),A2(2,0)。(I)求橢圓的方程;(II)若直線與x軸交于點(diǎn)T,點(diǎn)P為直線上異于點(diǎn)T的任一點(diǎn),直線PA1,PA2分別與橢圓交于M、N點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論。解:(I)由已知橢圓C的離心率,,則得。從而橢圓的方程為(II)設(shè),直線的斜率為,則直線的方程為,由消y整理得是方程的兩個(gè)根則,即點(diǎn)M的坐標(biāo)為同理,設(shè)直線A2N的斜率為k2,則得點(diǎn)N的坐標(biāo)為,直線MN的方程為:,
8、令y=0,得,將點(diǎn)M、N的坐標(biāo)代入,化簡后得:又,橢圓的焦點(diǎn)為,即故當(dāng)時(shí),MN過橢圓的焦點(diǎn)。方法總結(jié):本題由點(diǎn)A1(-2,0)的橫坐標(biāo)2是方程的一個(gè)根,結(jié)合韋達(dá)定理得到點(diǎn)M的橫坐標(biāo):,利用直線A1M的方程通過坐標(biāo)變換,得點(diǎn)M的縱坐標(biāo):;再將中的換下來,前的系數(shù)2用2換下來,就得點(diǎn)N的坐標(biāo),如果在解題時(shí),能看到這一點(diǎn),計(jì)算量將減少許多,并且也不易出錯(cuò),在這里減少計(jì)算量是本題的重點(diǎn)。否則,大家很容易陷入繁雜的運(yùn)算中,并且算錯(cuò),費(fèi)時(shí)耗精力,希望同學(xué)們認(rèn)真體會(huì)其中的精髓。 本題的關(guān)鍵是看到點(diǎn)P的雙重身份:點(diǎn)P即在直線上也在直線A2N上,進(jìn)而得到,由直線MN的方程得直線與x軸的交點(diǎn),即橫截距,將點(diǎn)M、N
9、的坐標(biāo)代入,化簡易得,由解出,到此不要忘了考察是否滿足。3、已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為 ()求橢圓的方程; ()過點(diǎn)作直線交于、兩點(diǎn),試問:在軸上是否存在一個(gè)定點(diǎn),為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請說明理由解:(I)設(shè)橢圓E的方程為,由已知得:。2分橢圓E的方程為。3分()法一:假設(shè)存在符合條件的點(diǎn),又設(shè),則:。5分當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,則由得7分所以9分對于任意的值,為定值,所以,得,所以;11分當(dāng)直線的斜率不存在時(shí),直線由得綜上述知,符合條件的點(diǎn)存在,起坐標(biāo)為13分法二:假設(shè)存在點(diǎn),又設(shè)則:=.5分當(dāng)直線的斜率
10、不為0時(shí),設(shè)直線的方程為,由得7分9分設(shè)則11分當(dāng)直線的斜率為0時(shí),直線,由得:綜上述知,符合條件的點(diǎn)存在,其坐標(biāo)為。13分定點(diǎn)定值過定點(diǎn)問題直線與曲線相交與兩點(diǎn),求證變式:xAyOBM如圖,拋物線上有兩點(diǎn)A()、B(),且·0,又(0,2),(1)求證:1.(07山東理)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3;最小值為1;()求橢圓C的標(biāo)準(zhǔn)方程;()若直線與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。解:(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為, (II)設(shè),由得,.以AB為直徑
11、的圓過橢圓的右頂點(diǎn),解得,且滿足.當(dāng)時(shí),直線過定點(diǎn)與已知矛盾;當(dāng)時(shí),直線過定點(diǎn)綜上可知,直線過定點(diǎn),定點(diǎn)坐標(biāo)為2. 已知橢圓C:的離心率為,且在x軸上的頂點(diǎn)分別為A1(-2,0),A2(2,0)。(I)求橢圓的方程;(II)若直線與x軸交于點(diǎn)T,點(diǎn)P為直線上異于點(diǎn)T的任一點(diǎn),直線PA1,PA2分別與橢圓交于M、N點(diǎn),試問直線MN是否通過橢圓的焦點(diǎn)?并證明你的結(jié)論。(I)由已知橢圓C的離心率,,則得。從而橢圓的方程為(II)設(shè),直線的斜率為,則直線的方程為,由消y整理得是方程的兩個(gè)根, 則,即點(diǎn)M的坐標(biāo)為,同理,設(shè)直線A2N的斜率為k2,則得點(diǎn)N的坐標(biāo)為,直線MN的方程為:,令y=0,得,將點(diǎn)M
12、、N的坐標(biāo)代入,化簡后得:又,橢圓的焦點(diǎn)為,即 故當(dāng)時(shí),MN過橢圓的焦點(diǎn)。3.(2010江蘇)18.(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右焦點(diǎn)為F,設(shè)過點(diǎn)的直線TA,TB與橢圓分別交于點(diǎn),其中.設(shè)動(dòng)點(diǎn)P滿足PF2PB2=4,求點(diǎn)P的軌跡設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))圓過定點(diǎn)4.(08江蘇)18設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C()求實(shí)數(shù)b 的取值范圍;()求圓C 的方程;()問圓C 是否經(jīng)過某定點(diǎn)(其坐標(biāo)與b 無關(guān))?請證明你的結(jié)論解:()令0,得拋物線與軸
13、交點(diǎn)是(0,b);令,由題意b0 且0,解得b1 且b0()設(shè)所求圓的一般方程為令0 得這與0 是同一個(gè)方程,故D2,F(xiàn)令0 得0,此方程有一個(gè)根為b,代入得出Eb1所以圓C 的方程為.()圓C 必過定點(diǎn)(0,1)和(2,1)證明如下:將(0,1)代入圓C 的方程,得左邊012×0(b1)b0,右邊0,所以圓C 必過定點(diǎn)(0,1)同理可證圓C 必過定點(diǎn)(2,1)5.已知橢圓,點(diǎn)是橢圓上異于頂點(diǎn)的任意一點(diǎn),過點(diǎn)作橢圓的切線,交軸與點(diǎn)直線過點(diǎn)且垂直與,交軸與點(diǎn)試判斷以為直徑的圓能否經(jīng)過定點(diǎn)?若能,求出定點(diǎn)坐標(biāo);若不能,請說明理由.解:設(shè)點(diǎn),直線的方程為代入,整理得.是方程的兩個(gè)相等實(shí)根,
14、解得或根據(jù)求導(dǎo)解得直線的方程為令,得點(diǎn)的坐標(biāo)為又點(diǎn)的坐標(biāo)為又直線的方程為令,得點(diǎn)的坐標(biāo)為以為直徑的圓方程為整理得由得以為直徑的圓恒過定點(diǎn)和6.如圖,點(diǎn)A,B,C是橢圓的三個(gè)頂點(diǎn),D是OA的中點(diǎn),P、Q是直線上的兩個(gè)動(dòng)點(diǎn)。 ()當(dāng)點(diǎn)P的縱坐標(biāo)為1時(shí),求證:直線CD與BP的交點(diǎn)在橢圓上; ()設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),試判斷以線段PQ為直徑的圓是否恒過定點(diǎn),請說明理由。高考資源網(wǎng)w。w-w*k&s%5¥u解:()由題意,時(shí),直線CD方程為,直線BP方程為, -2分由方程組 解得, -3分高考資源網(wǎng)w。w-w*k&s%5¥u+=+=1, 在橢圓上,直線 CD 與BP的交點(diǎn)在
15、橢圓上 -5分(),焦點(diǎn), -6分設(shè), -8分, ,線段PQ為直徑的圓圓心是的中點(diǎn)(4,),半徑為,圓的方程為 -10分 -12分令,得 或 ,以線段為直徑的圓恒過定點(diǎn) -13分定值7.已知定點(diǎn)C(1,0)及橢圓x23y25,過點(diǎn)C的動(dòng)直線與橢圓相交于A,B兩點(diǎn),在x軸上是否存在點(diǎn)M,使·為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由解析假設(shè)在x軸上存在點(diǎn)M(m,0),使·為常數(shù)設(shè)A(x1,y1),B(x2,y2)當(dāng)直線AB與x軸不垂直時(shí),直線AB的斜率存在,設(shè)直線AB的方程為yk(x1),將yk(x1)代入x23y25,消去y整理得(3k21)x26k2x3k250
16、.則所以·(x1m)(x2m)y1y2(x1m)(x2m)k2(x11)(x21)(k21)x1x2(k2m)(x1x2)k2m2.整理得·m2m2m22m.注意到·是與k無關(guān)的常數(shù),從而有6m140,m,此時(shí)·.當(dāng)直線AB與x軸垂直時(shí),此時(shí)點(diǎn)A,B的坐標(biāo)分別為A(1,)、B(1,),當(dāng)m時(shí),亦有·.綜上,在x軸上存在定點(diǎn)M(,0),使·為常數(shù)8.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的動(dòng)直線與雙曲線相交于兩點(diǎn)(I)若動(dòng)點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),求點(diǎn)的軌跡方程;(II)在軸上是否存在定點(diǎn),使·為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存
17、在,請說明理由解:由條件知,設(shè),解法一:(I)設(shè),則則,由得即于是的中點(diǎn)坐標(biāo)為當(dāng)不與軸垂直時(shí),即又因?yàn)閮牲c(diǎn)在雙曲線上,所以,兩式相減得,即將代入上式,化簡得當(dāng)與軸垂直時(shí),求得,也滿足上述方程所以點(diǎn)的軌跡方程是(II)假設(shè)在軸上存在定點(diǎn),使為常數(shù)當(dāng)不與軸垂直時(shí),設(shè)直線的方程是代入有則是上述方程的兩個(gè)實(shí)根,所以,于是因?yàn)槭桥c無關(guān)的常數(shù),所以,即,此時(shí)=當(dāng)與軸垂直時(shí),點(diǎn)的坐標(biāo)可分別設(shè)為,此時(shí)故在軸上存在定點(diǎn),使為.9.已知橢圓:點(diǎn)的坐標(biāo)為,過橢圓右焦點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn),對于任意的是否為定值?若是求出這個(gè)定值;若不是,請說明理由.解析:由已知得直線的方程為由消去得設(shè)則由此可知,為定值.10.(07湖北理科)在平面直角坐標(biāo)系xOy中,過定點(diǎn)C(0,p)作直線與拋物線x2=2py(p>0)相交于A、B兩點(diǎn)。()若點(diǎn)N是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求ANB面積的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度橋梁欄桿采購合同模板6篇
- 2025年度口腔診所投資合作與風(fēng)險(xiǎn)分擔(dān)合同3篇
- 二零二五版材料采購合同補(bǔ)充協(xié)議:技術(shù)創(chuàng)新共享2篇
- 二零二五版抵押借款合同與借款合同簽訂流程與風(fēng)險(xiǎn)防范3篇
- 二零二五版國有房產(chǎn)出售合同(智慧社區(qū)共建協(xié)議)3篇
- 2025年度餐飲業(yè)中央廚房租賃合同3篇
- 二零二五年度35KV變電站電氣設(shè)備技術(shù)改造合同3篇
- 二零二五年房地產(chǎn)項(xiàng)目鄉(xiāng)村振興戰(zhàn)略合作開發(fā)合同3篇
- 二零二五版班組分包道路養(yǎng)護(hù)合同3篇
- 2025版金融產(chǎn)品股權(quán)及債權(quán)轉(zhuǎn)讓與風(fēng)險(xiǎn)管理合同3篇
- 公務(wù)員考試工信部面試真題及解析
- GB/T 15593-2020輸血(液)器具用聚氯乙烯塑料
- 2023年上海英語高考卷及答案完整版
- 西北農(nóng)林科技大學(xué)高等數(shù)學(xué)期末考試試卷(含答案)
- 金紅葉紙業(yè)簡介-2 -紙品及產(chǎn)品知識(shí)
- 《連鎖經(jīng)營管理》課程教學(xué)大綱
- 《畢淑敏文集》電子書
- 頸椎JOA評分 表格
- 員工崗位能力評價(jià)標(biāo)準(zhǔn)
- 定量分析方法-課件
- 朱曦編著設(shè)計(jì)形態(tài)知識(shí)點(diǎn)
評論
0/150
提交評論